Observed seismic performance of buildings and bridges during a major earthquake followed by one other major earthquake in the close vicinity of the first one

Author:

Caner AlpORCID,Cinar Melike,Ates Ahmet Derya

Abstract

AbstractIn the recent 2023 major earthquake triggering one other large earthquake in Anatolia, the poor structural performance of buildings and the satisfactory performance of bridges remained relatively consistent compared to past observed earthquake experiences. Despite numerous building collapses, it is worth noting that no bridges collapsed during the event. Several engineering factors for poor building performance have been identified based on field building inspections in the recent and past earthquakes, such as the misuse of building design software without proper engineering judgment, the utilization of poor-quality construction materials, underestimation of earthquake forces, construction on inadequate soil conditions, design mistakes, and incorrect implementation of high ductility reinforcement details. In the aftermath of the earthquake, it was found that only a small percentage of bridges (1%) were closed, and approximately 50% of them were reopened to traffic within 24 h. Remarkably, no bridge collapses including the modern or old bridges were reported in the affected area. The focus of this paper is to identify the differences in the design philosophy between buildings and bridges and to understand the reasons behind the bridges’ resilience during these rare earthquakes. The study involves analyzing past structural performances of buildings and bridges under different earthquake conditions and design requirements. Analytical results from a survived 90-year-old reinforced concrete arch railroad bridge, highlighting its resilience and design characteristics are also presented.

Funder

Middle East Technical University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3