Skip to main content

Advertisement

Log in

The efficacy and safety of FcRn inhibitors in patients with myasthenia gravis: a systematic review and meta-analysis

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Myasthenia gravis (MG) is an autoimmune disease that causes local or generalized muscle weakness. Complement inhibitors and targeting of the neonatal Fc receptor (FcRn) to block IgG cycling are two novel and successful mechanisms.

Methods

PubMed, EMBASE, the Cochrane Library, and ClinicalTrials.gov were systematically searched to identify relevant studies published before May 18, 2023. Review Manager 5.3 software was used to assess the data.

Results

We pooled 532 participants from six randomized controlled trials (RCTs). Compared to the placebo, the FcRn inhibitors were more efficacy in Myasthenia Gravis Activities of Daily Living (MG-ADL) (MD = − 1.69 [− 2.35, − 1.03], P < 0.00001), MG-ADL responder (RR = 2.01 [1.62, 2.48], P < 0.00001), Quantitative Myasthenia Gravis (QMG) (MD = − 2.45 [− 4.35, − 0.55], P = 0.01), Myasthenia Gravis Composite (MGC) (MD = − 2.97 [− 4.27, − 1.67], P < 0.00001), 15-item revised version of the Myasthenia Gravis Quality of Life (MGQoL15r) (MD = − 2.52 [− 3.54, − 1.50], P < 0.00001), without increasing the risk of safety. The subgroup analysis showed that efgartigimod was more effective than placebo in MG-ADL responders. Rozanolixizumab was more effective than the placebo except in QMG, and batoclimab was more effective than the placebo except in MG-ADL responder. Nipocalizumab did not show satisfactory efficacy in all outcomes. With the exception of rozanolixizumab, all drugs showed non-inferior safety profiles to placebo.

Conclusion

FcRn inhibitors have good efficacy and safety in patients with MG. Among them, efgartigimod and nipocalimab were effective without causing an increased safety risk. Rozanolixizumab, despite its superior efficacy, caused an increased incidence of adverse events. Current evidence does not suggest that nipocalimab is effective in patients with MG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Gilhus NE, Tzartos S, Evoli A et al (2019) Myasthenia gravis. Nat Rev Dis Primers 5:30. https://doi.org/10.1038/s41572-019-0079-y

    Article  PubMed  Google Scholar 

  2. Vincent A, Huda S, Cao M et al (2018) Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci 1413(143–153):20180129. https://doi.org/10.1111/nyas.13592

    Article  CAS  Google Scholar 

  3. Gilhus NE (2016) Myasthenia gravis. N Engl J Med 375:2570–2581. https://doi.org/10.1056/NEJMra1602678

    Article  CAS  PubMed  Google Scholar 

  4. Lünemann JD (2021) Getting specific: targeting Fc receptors in myasthenia gravis. Nat Rev Neurol 17:597–598. https://doi.org/10.1038/s41582-021-00547-z

    Article  CAS  PubMed  Google Scholar 

  5. Hehir MK, Silvestri NJ (2018) Generalized myasthenia gravis: classification, clinical presentation, natural history, and epidemiology. Neurol Clin 36:253–260. https://doi.org/10.1016/j.ncl.2018.01.002

    Article  PubMed  Google Scholar 

  6. Carr AS, Cardwell CR, McCarron PO et al (2010) A systematic review of population based epidemiological studies in Myasthenia Gravis. BMC Neurol 10:46. https://doi.org/10.1186/1471-2377-10-46

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nair SS, Jacob S (2023) Novel immunotherapies for myasthenia gravis. Immunotargets Ther 12(25–45):20230404. https://doi.org/10.2147/itt.S377056

    Article  Google Scholar 

  8. Mantegazza R, Bonanno S, Camera G et al (2011) Current and emerging therapies for the treatment of myasthenia gravis. Neuropsychiatr Dis Treat 7(151–160):20110322. https://doi.org/10.2147/ndt.S8915

    Article  Google Scholar 

  9. Mantegazza R, Antozzi C (2018) When myasthenia gravis is deemed refractory: clinical signposts and treatment strategies. Ther Adv Neurol Disord 11:20180118. https://doi.org/10.1177/1756285617749134

    Article  Google Scholar 

  10. Narayanaswami P, Sanders DB, Wolfe G et al (2021) International consensus guidance for management of myasthenia gravis: 2020 update. Neurology 96(114–122):20201103. https://doi.org/10.1212/wnl.0000000000011124

    Article  Google Scholar 

  11. Schneider-Gold C, Hagenacker T, Melzer N et al (2019) Understanding the burden of refractory myasthenia gravis. Ther Adv Neurol Disord 12(1756286419832242):20190301. https://doi.org/10.1177/1756286419832242

    Article  Google Scholar 

  12. Menon D, Barnett C, Bril V (2020) Novel treatments in myasthenia gravis. Front Neurol 11(538):20200630. https://doi.org/10.3389/fneur.2020.00538

    Article  Google Scholar 

  13. Schneider-Gold C, Gilhus NE (2021) Advances and challenges in the treatment of myasthenia gravis. Ther Adv Neurol Disord 14:20211221. https://doi.org/10.1177/17562864211065406

    Article  CAS  Google Scholar 

  14. Huijbers MG, Marx A, Plomp JJ et al (2022) Advances in the understanding of disease mechanisms of autoimmune neuromuscular junction disorders. Lancet Neurol 21:163–175. https://doi.org/10.1016/S1474-4422(21)00357-4

    Article  CAS  PubMed  Google Scholar 

  15. Burden SJ, Yumoto N, Zhang W (2013) The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harb Perspect Biol 5:20130501. https://doi.org/10.1101/cshperspect.a009167

    Article  CAS  Google Scholar 

  16. Keller CW, Pawlitzki M, Wiendl H et al (2021) Fc-receptor targeted therapies for the treatment of myasthenia gravis. Int J Mol Sci 22:20210528. https://doi.org/10.3390/ijms22115755

    Article  CAS  Google Scholar 

  17. Gilhus NE, Lindroos J (2022) 5.25—Myasthenia gravis. In: Kenakin T (ed) Comprehensive pharmacology. Elsevier, Oxford, pp 461–478

    Chapter  Google Scholar 

  18. Huijbers MG, Zhang W, Klooster R et al (2013) MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci 110:20783–20788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dalakas MC, Spaeth PJ (2021) The importance of FcRn in neuro-immunotherapies: from IgG catabolism, FCGRT gene polymorphisms, IVIg dosing and efficiency to specific FcRn inhibitors. Ther Adv Neurol Disord 14:20210226. https://doi.org/10.1177/1756286421997381

    Article  CAS  Google Scholar 

  20. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed) 339:2700. https://doi.org/10.1136/bmj.b2700. (2009/07/23)

    Article  Google Scholar 

  21. Shuster JJ (2011) Review: cochrane handbook for systematic reviews for interventions, Version 5.1.0, published 3/2011. Julian P.T. Higgins and Sally Green, Eitors. Res Synthesis Methods 2:126–130. https://doi.org/10.1002/jrsm.38

    Article  Google Scholar 

  22. Heo YA (2022) Efgartigimod: first approval. Drugs 82:341–348. https://doi.org/10.1007/s40265-022-01678-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hoy SM (2023) Rozanolixizumab: first approval. Drugs. https://doi.org/10.1007/s40265-023-01933-1

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saccà F, Pane C, Espinosa PE et al (2023) Efficacy of innovative therapies in myasthenia gravis: a systematic review, meta-analysis and network meta-analysis. Eur J Neurol. https://doi.org/10.1111/ene.15872

    Article  PubMed  Google Scholar 

  25. Sivadasan A, Bril V (2023) Clinical efficacy and safety of efgartigimod for treatment of myasthenia gravis. Immunotherapy 15(553–563):20230404. https://doi.org/10.2217/imt-2022-0298

    Article  CAS  Google Scholar 

  26. Howard JF, Bril V, Vu T et al (2021) Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol 20:526–536. https://doi.org/10.1016/S1474-4422(21)00159-9

    Article  CAS  PubMed  Google Scholar 

  27. argenx. Vyvgart™ (efgartigimod alfa-fcab) injection, for intravenous use: US highlights of prescribing information. 2021. https://argenx.com/product/vyvgart-prescribing-information.pdf

  28. https://www.businesswire.com/news/home/20220321005941/en/argenx-Announces-Positive-Topline-Phase-3-Data-From-ADAPT-SC-Study-Evaluating-Subcutaneous-Efgartigimod-for-Generalized-Myasthenia-Gravis aAPTPDFA-SSESEfGMGIcA.

  29. Smith B, Kiessling A, Lledo-Garcia R et al (2018) Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma IgG concentration. MAbs 10(1111–1130):20180912. https://doi.org/10.1080/19420862.2018.1505464

    Article  CAS  Google Scholar 

  30. Bril V, Drużdż A, Grosskreutz J et al (2023) Safety and efficacy of rozanolixizumab in patients with generalised myasthenia gravis (MycarinG): a randomised, double-blind, placebo-controlled, adaptive phase 3 study. Lancet Neurol 22:383–394. https://doi.org/10.1016/S1474-4422(23)00077-7

    Article  CAS  PubMed  Google Scholar 

  31. Kiessling P, Lledo-Garcia R, Watanabe S et al (2017) The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci Transl Med 9:eaan1208. https://doi.org/10.1126/scitranslmed.aan1208

    Article  CAS  PubMed  Google Scholar 

  32. Yap DYH, Hai J, Lee PCH et al (2021) Safety, tolerability, pharmacokinetics, and pharmacodynamics of HBM9161, a novel FcRn inhibitor, in a phase I study for healthy Chinese volunteers. Clin Transl Sci 14(1769–1779):20210716. https://doi.org/10.1111/cts.13019

    Article  CAS  Google Scholar 

  33. Zhu LN, Hou HM, Wang S et al (2023) FcRn inhibitors: a novel option for the treatment of myasthenia gravis. Neural Regen Res 18:1637–1644. https://doi.org/10.4103/1673-5374.363824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yan C, Duan RS, Yang H et al (2022) Therapeutic effects of batoclimab in Chinese patients with generalized myasthenia gravis: a double-blinded, randomized, placebo-controlled phase II study. Neurol Ther 11(815–834):20220412. https://doi.org/10.1007/s40120-022-00345-9

    Article  Google Scholar 

  35. Ramchandren S, Sanga P, Burcklen M et al (2022) Vivacity MG PHASE 3 STUdy: clinical trial of nipocalimab administered to adults with generalized myasthenia gravis. Neurology 99:S41–S41. https://doi.org/10.1212/01.wnl.0000903328.46907.49

    Article  CAS  Google Scholar 

Download references

Funding

The preparation of this article was supported by the Suzhou Health Talents Training Project (GSWS2019002) to Zhong Wang. Zhouqing Chen was supported by the Natural Science Foundation of Jiangsu Province (BK20200203) and the Suzhou Health Talents Training Project (GSWS2020022).

Author information

Authors and Affiliations

Authors

Contributions

ZW and ZQC were the principal investigators. JXL and XW designed the study and developed the analysis plan. JXL, XW and TCC analyzed the data and performed the meta-analysis. JXL and XW contributed to the writing of the article. XT, SXW, and RSQ revised the manuscript and polished the language. All authors read and approved the final submitted paper.

Corresponding authors

Correspondence to Zhouqing Chen or Zhong Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Ethical approval

We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13444 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wu, X., Chu, T. et al. The efficacy and safety of FcRn inhibitors in patients with myasthenia gravis: a systematic review and meta-analysis. J Neurol 271, 2298–2308 (2024). https://doi.org/10.1007/s00415-024-12247-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-024-12247-x

Keywords

Navigation