Wearable sensors can reliably quantify gait alterations associated with disability in people with progressive multiple sclerosis in a clinical setting

Author:

Angelini LorenzaORCID,Hodgkinson William,Smith Craig,Dodd Jessie Moorman,Sharrack Basil,Mazzà Claudia,Paling David

Abstract

AbstractGait disability in people with progressive multiple sclerosis (MS) is difficult to quantify using existing clinical tools. This study aims to identify reliable and objective gait-based biomarkers to monitor progressive multiple sclerosis (MS) in clinical settings. During routine clinical visits, 57 people with secondary progressive MS and 24 healthy controls walked for 6 minutes wearing three inertial motion sensors. Fifteen gait measures were computed from the sensor data and tested for between-session reliability, for differences between controls and people with moderate and severe MS disability, and for correlation with Expanded Disability Status Scale (EDSS) scores. The majority of gait measures showed good to excellent between-session reliability when assessed in a subgroup of 23 healthy controls and 25 people with MS. These measures showed that people with MS walked with significantly longer step and stride durations, reduced step and stride regularity, and experienced difficulties in controlling and maintaining a stable walk when compared to controls. These abnormalities significantly increased in people with a higher level of disability and correlated with their EDSS scores. Reliable and objective gait-based biomarkers using wearable sensors have been identified. These biomarkers may allow clinicians to quantify clinically relevant alterations in gait in people with progressive MS within the context of regular clinical visits.

Funder

NIHR through the Sheffield Biomedical Research Centre

European Union’s Horizon 2020 research and innovation programme and EFPIA via the Innovative Medicine Initiative 2

UK Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3