The phenotypic spectrum of pathogenic ATP1A1 variants expands: the novel p.P600R substitution causes demyelinating Charcot–Marie–Tooth disease

Author:

Cinarli Yuksel Feride,Nicolaou Paschalis,Spontarelli Kerri,Dohrn Maike F.,Rebelo Adriana P.,Koutsou Pantelitsa,Georghiou Anthi,Artigas Pablo,Züchner Stephan L.,Kleopa Kleopas A.,Christodoulou KyproulaORCID

Abstract

Abstract Background Charcot–Marie–Tooth disease (CMT) is a genetically and clinically heterogeneous group of inherited neuropathies. Monoallelic pathogenic variants in ATP1A1 were associated with axonal and intermediate CMT. ATP1A1 encodes for the catalytic α1 subunit of the Na+/ K+ ATPase. Besides neuropathy, other associated phenotypes are spastic paraplegia, intellectual disability, and renal hypomagnesemia. We hereby report the first demyelinating CMT case due to a novel ATP1A1 variant. Methods Whole-exome sequencing on the patient’s genomic DNA and Sanger sequencing to validate and confirm the segregation of the identified p.P600R ATP1A1 variation were performed. To evaluate functional effects, blood-derived mRNA and protein levels of ATP1A1 and the auxiliary β1 subunit encoded by ATP1B1 were investigated. The ouabain-survival assay was performed in transfected HEK cells to assess cell viability, and two-electrode voltage clamp studies were performed in Xenopus oocytes. Results The variant was absent in the local and global control datasets, falls within a highly conserved protein position, and is in a missense-constrained region. The expression levels of ATP1A1 and ATP1B1 were significantly reduced in the patient compared to healthy controls. Electrophysiology indicated that ATP1A1p.P600R injected Xenopus oocytes have reduced Na+/ K+ ATPase function. Moreover, HEK cells transfected with a construct encoding ATP1A1p.P600R harbouring variants that confers ouabain insensitivity displayed a significant decrease in cell viability after ouabain treatment compared to the wild type, further supporting the pathogenicity of this variant. Conclusion Our results further confirm the causative role of ATP1A1 in peripheral neuropathy and broaden the mutational and phenotypic spectrum of ATP1A1-associated CMT.

Funder

Telethon Cyprus

RCB Bank Cyprus

National Coordination Office

National Institute for Health Care Management Foundation

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3