Paradigm Shift in Natural Language Processing

Author:

Sun Tian-XiangORCID,Liu Xiang-YangORCID,Qiu Xi-PengORCID,Huang Xuan-JingORCID

Abstract

AbstractIn the era of deep learning, modeling for most natural language processing (NLP) tasks has converged into several mainstream paradigms. For example, we usually adopt the sequence labeling paradigm to solve a bundle of tasks such as POS-tagging, named entity recognition (NER), and chunking, and adopt the classification paradigm to solve tasks like sentiment analysis. With the rapid progress of pre-trained language models, recent years have witnessed a rising trend of paradigm shift, which is solving one NLP task in a new paradigm by reformulating the task. The paradigm shift has achieved great success on many tasks and is becoming a promising way to improve model performance. Moreover, some of these paradigms have shown great potential to unify a large number of NLP tasks, making it possible to build a single model to handle diverse tasks. In this paper, we review such phenomenon of paradigm shifts in recent years, highlighting several paradigms that have the potential to solve different NLP tasks.

Publisher

Springer Science and Business Media LLC

Reference95 articles.

1. X. Y. Li, J. R. Feng, Y. X. Meng, Q. H. Han, F. Wu, J. W. Li. A unified MRC framework for named entity recognition. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL, pp. 5849–5859, 2020. DOI: https://doi.org/10.18653/v1/2020.acl-main.519.

2. H. Yan, T. Gui, J. Q. Dai, Q. P. Guo, Z. Zhang, X. P. Qiu. A unified generative framework for various NER subtasks. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL, pp. 5808–5822, 2021. DOI: https://doi.org/10.18653/v1/2021.acl-long.451.

3. J. Devlin, M. W. Chang, K. Lee, K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, ACL, Minneapolis, USA, pp. 4171–4186, 2019. DOI: https://doi.org/10.18653/v1/N19-1423.

4. C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Q. Zhou, W. Li, P. J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of Machine Learning Research, vol. 21, no. 140, pp. 1–67, 2020.

5. T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, D. Amodei. Language models are few-shot learners. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2020.

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adaptive spatiotemporal neural networks through complementary hybridization;Nature Communications;2024-08-27

2. Exploring Instruction Feature Adaptation for Event Argument Extraction in Large Language Models;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

3. Enhancing Data Augmentation with Knowledge-enriched Data Generation via Dynamic Prompt-tuning Method;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. Intersection of machine learning and mobile crowdsourcing: a systematic topic-driven review;Personal and Ubiquitous Computing;2024-06-10

5. Using Transformers to Classify Arabic Dialects on Social Networks;2024 6th International Conference on Pattern Analysis and Intelligent Systems (PAIS);2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3