Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000

Author:

Zauner MarkusORCID,Sandham Neil D.

Abstract

AbstractAn airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = 4, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = 3 to α = 4 leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion.

Funder

Engineering and Physical Sciences Research Council

Partnership for Advanced Computing in Europe AISBL

ARCHER

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3