Reynolds Number Dependency of Wall-Bounded Turbulence Over a Surface Partially Covered by Barnacle Clusters

Author:

Sarakinos Sotirios,Busse Angela

Abstract

AbstractThe settlement of barnacles on a ship hull is a common form of marine biofouling. In this study, the Reynolds number dependency of turbulent flow over a surface partially covered by barnacle clusters is investigated using direct numerical simulations of turbulent channel flow at friction Reynolds numbers ranging from 180 to 720. Mean flow, Reynolds and dispersive stress statistics are evaluated and compared to the corresponding results for a generic irregular rough surface with a Gaussian height distribution. For the barnacle surface, distinctive features emerge in the velocity statistics due to the interplay between the barnacle clusters and the large, connected smooth-wall sections surrounding them. This aspect is further investigated by applying a rough-smooth decomposition to the local time-averaged flow statistics for the barnacle surface. Using this decomposition, the partial recovery of smooth-wall behaviour over the smooth sections of the barnacle surface can be observed in the Reynolds stress statistics with the streamwise Reynolds stresses exhibiting a similar behaviour as previously found for boundary layers over surfaces with a rough to smooth transition.

Funder

Engineering and Physical Sciences Research Council

Leverhulme Trust

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3