Review of Modelling of Pyrolysis Processes with CFD-DEM

Author:

Attanayake Don Dasun,Sewerin Fabian,Kulkarni Shreyas,Dernbecher Andrea,Dieguez-Alonso Alba,van Wachem Berend

Abstract

AbstractIn a pyrolysis reactor, organic polymers from biomass or plastic waste are thermally decomposed into volatile gases, condensable vapours (tar or bio-oil) and solid residues (char). Since these products may serve as building blocks for downstream chemical refinement or form the basis of bio-derived fuels, pyrolysis is thought to be instrumental in our progress towards a circular economy. A pyrolysis reactor constitutes a multiphase reactive system whose operation is influenced by many chemical and physical phenomena that occur at different scales. Because the interactions and potential reinforcements of these processes are difficult to isolate and elucidate experimentally, the development of a predictive modelling tool, for example, based on the CFD-DEM (discrete element method) methodology, is attracting increasing attention, particularly for pyrolysis reactors operated with biomass as feedstock. By contrast, CFD-DEM descriptions of plastic pyrolysis remain a challenge at present, mainly due to an incomplete understanding of their melting behaviour. In this article, we provide a blueprint for describing a pyrolysis process within the scope of CFD-DEM, review modelling choices made in past investigations and detail the underlying assumptions. Furthermore, the influence of operating conditions and feedstock properties on the key metrics of the process, such as feedstock conversion, product composition and residence time, as determined by past CFD-DEM analyses is surveyed and systematised. Open challenges that we identify pertain to the incorporation of particle non-sphericity and polydispersity, the melting of plastics, particle shrinkage, exothermicity on part of the gas-particle chemistry and catalytic effects.

Funder

Otto-von-Guericke-Universität Magdeburg

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,General Chemical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3