Soil erosion risk and sediment yield assessment with universal soil loss equation and GIS: in Dijo watershed, Rift valley Basin of Ethiopia

Author:

Bekele BagegnehuORCID,Gemi Yenealem

Abstract

AbstractSoil erosion is the main drivers in the world and Ethiopia in particular. This study has been conducted at Dijo watersheds in the Rift valley Basins of Ethiopia to estimate soil erosion rate and identify erosion hotspot areas for proper planning using Geographic Information System and Universal Soil Loss Equation adapted to Ethiopian condition. 64 years mean annual rainfall data for estimating erosivity factor, digital soil map for estimating soil erodibility factor, Digital Elevation Model for estimating topographic (LS) factor, Land use land cover for cover factor detection from Ethiopian ministry of water resources. The result reveals that the soil loss ranges from 0 ton/ha/year in flat slope to 38.09 ton/ha/year from steep slopes. The average soil loss rate is 2.2 tons per hectare per year and has been classified into three erosion severity classes as very low, low and moderate. The result also reveals that most of the watershed erosion severity evaluated under very low and low soil erosion severity classes covering 97.3% of the watershed areas which is due to the effect of mixed plantation of various tree and terraces. However, moderate soil erosion in the upper parts of the watershed could be due to the inherent characteristics of vertisols, lack of vegetation cover and terraces which should be given first priority for conservation interventions. From the gross soil erosion, 43,762 ton/year sediment yields have been estimated at watershed outlet. Policy aim at keeping land productivity will need to focus to reduce low and moderate soil erosion through terracing, inter-cropping, contour farming, strip cropping, conservation tillage, mulching and biological stabilizers based on their slope range, soil type and land use type. The current finding on erosion was evaluated based on the past 10 years land use land cover scenario; therefore, soil erosion might be reduced if the current land use land cover scenario considered. Finally, the integration of USLE and GIS is an effective tool in mapping the spatial distribution of soil erosion from the entire watershed. The moderate and low soil erosion severity areas should be managed through terracing, inter-cropping, contour farming, strip cropping, conservation tillage, mulching and biological stabilizers based on their slope range, soil type and land use type. Free grazing and cultivation of steep slope(Northern parts) contributed for moderate soil erosion in the watershed should be managed by cut–carry system, limiting the number of cattle units to be grazed in the specific plot of land and leaving the marginal steep slope areas with no ground covers for natural regeneration. Finally, the current finding on erosion was evaluated based on the past 10-year land use land cover scenario. Therefore, the soil erosion could be reduced if the current land use land cover scenario is considered.

Publisher

Springer Science and Business Media LLC

Subject

Computers in Earth Sciences,Statistics, Probability and Uncertainty,General Agricultural and Biological Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3