Cellular and Molecular Mechanisms of Insulin Resistance

Author:

Chandrasekaran Preethi,Weiskirchen RalfORCID

Abstract

Abstract Purpose of Review Although the molecular mechanism of insulin resistance involves multiple factors and several intrinsic and extrinsic mechanisms have been identified, this comprehensive review provides key information on some of the core mechanisms and complex interactions of the molecules involved in the signaling pathways of insulin resistance. Recent Findings Diabetes Mellitus, the most common metabolic disorder, is one of the greatest global medical challenges at present. There has been a significant increase in complications associated with diabetes such as heart disorders, stroke, neuropathy, dyslipidemia, metabolic dysfunction-associated steatotic liver disease, and nephropathy. This calls for immediate strategic action to combat this complex metabolic disorder. Insulin resistance, a characteristic marker of type 2 diabetes is a condition in which the regulation of glucose metabolism in body tissues, such as the liver, adipose tissue, and skeletal muscle, becomes disrupted. It is generally associated with hyperglycemia, hyperinsulinemia, hyperlipidemia, and impaired glucose homeostasis. Summary Understanding the pathophysiological molecular mechanisms involved in insulin resistance is critical for developing new therapeutic strategies to treat this polygenic multifactorial condition. Impairment of insulin action is caused by several factors such as lipotoxicity, increased adiposity, enhanced inflammatory signaling, endoplasmic reticulum stress, adipokines, mitochondrial dysfunction, increased free fatty acids, and dysfunctional insulin signaling.

Funder

Deutsche Forschungsgemeinschaft

Deutsche Krebshilfe

Medizinische Fakultät, RWTH Aachen University

Universitätsklinikum RWTH Aachen

Publisher

Springer Science and Business Media LLC

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Oxidative Stress and Antioxidant Interventions in Type 2 Diabetes;Biochemical and Physiological Response During Oxidative Stress - From Invertebrates to Vertebrates [Working Title];2024-08-29

2. Insulin–Heart Axis: Bridging Physiology to Insulin Resistance;International Journal of Molecular Sciences;2024-07-31

3. Impact of Lipids on Insulin Resistance: Insights from Human and Animal Studies;Drug Design, Development and Therapy;2024-07

4. The signaling pathways in obesity‐related complications;Journal of Cell Communication and Signaling;2024-06

5. Effects of Probiotics on Gut Microbiota: An Overview;International Journal of Molecular Sciences;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3