Abstract
AbstractWe study the dynamics of a parabolic and a hyperbolic equation coupled on a common interface. We develop time-stepping schemes that can use different time-step sizes for each of the subproblems. The problem is formulated in a strongly coupled (monolithic) space-time framework. Coupling two different step sizes monolithically gives rise to large algebraic systems of equations. There, multiple states of the subproblems must be solved at once. For efficiently solving these algebraic systems, we inherit ideas from the partitioned regime. Therefore we present two decoupling methods, namely a partitioned relaxation scheme and a shooting method. Furthermore, we develop an a posteriori error estimator serving as a mean for an adaptive time-stepping procedure. The goal is to optimally balance the time-step sizes of the two subproblems. The error estimator is based on the dual weighted residual method and relies on the space-time Galerkin formulation of the coupled problem. As an example, we take a linear set-up with the heat equation coupled to the wave equation. We formulate the problem in a monolithic manner using the space-time framework. In numerical test cases, we demonstrate the efficiency of the solution process and we also validate the accuracy of the a posteriori error estimator and its use for controlling the time-step sizes.
Funder
Deutsche Forschungsgemeinschaft
Bundesministerium für Bildung und Forschung
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics,Computer Networks and Communications,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献