Evolution of white matter hyperintensity segmentation methods and implementation over the past two decades; an incomplete shift towards deep learning

Author:

Rahmani Maryam,Dierker Donna,Yaeger Lauren,Saykin Andrew,Luckett Patrick H.,Vlassenko Andrei G.,Owens Christopher,Jafri Hussain,Womack Kyle,Fripp Jurgen,Xia Ying,Tosun Duygu,Benzinger Tammie L. S.,Masters Colin L.,Lee Jin-Moo,Morris John C.,Goyal Manu S.,Strain Jeremy F.,Kukull Walter,Weiner Michael,Burnham Samantha,CoxDoecke Tim James,Fedyashov Victor,Fripp Jurgen,Shishegar Rosita,Xiong Chengjie,Marcus Daniel,Raniga Parnesh,Li Shenpeng,Aschenbrenner Andrew,Hassenstab Jason,Lim Yen Ying,Maruff Paul,Sohrabi Hamid,Robertson Jo,Markovic Shaun,Bourgeat Pierrick,Doré Vincent,Mayo Clifford Jack,Mussoumzadeh Parinaz,Rowe Chris,Villemagne Victor,Bateman Randy,Fowler Chris,Li Qiao-Xin,Martins Ralph,Schindler Suzanne,Shaw Les,Cruchaga Carlos,Harari Oscar,Laws Simon,Porter Tenielle,O’Brien Eleanor,Perrin Richard,Kukull Walter,Bateman Randy,McDade Eric,Jack Clifford,Morris John,Yassi Nawaf,Bourgeat Pierrick,Perrin Richard,Roberts Blaine,Villemagne Victor,Fedyashov Victor,Goudey Benjamin, , , , , , , , , , , ,

Abstract

AbstractThis systematic review examines the prevalence, underlying mechanisms, cohort characteristics, evaluation criteria, and cohort types in white matter hyperintensity (WMH) pipeline and implementation literature spanning the last two decades. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we categorized WMH segmentation tools based on their methodologies from January 1, 2000, to November 18, 2022. Inclusion criteria involved articles using openly available techniques with detailed descriptions, focusing on WMH as a primary outcome. Our analysis identified 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles. These studies predominantly explored aging, dementia, psychiatric disorders, and small vessel disease, with aging and dementia being the most prevalent cohorts. Deep learning emerged as the most frequently developed segmentation technique, indicative of a heightened scrutiny in new technique development over the past two decades. We illustrate observed patterns and discrepancies between published and implemented WMH techniques. Despite increasingly sophisticated quantitative segmentation options, visual rating scales persist, with the SPM technique being the most utilized among quantitative methods and potentially serving as a reference standard for newer techniques. Our findings highlight the need for future standards in WMH segmentation, and we provide recommendations based on these observations.

Funder

Barnes-Jewish Hospital Foundation

the James S. McDonnell Foundation

McDonnell Center for Systems Neuroscience

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3