Skip to main content

Advertisement

Log in

Interaction between lncRNAs and RNA-binding proteins (RBPs) influences DNA damage response in cancer chemoresistance

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The DNA damage response (DDR) is a crucial cellular signaling pathway activated in response to DNA damage, including damage caused by chemotherapy. Chemoresistance, which refers to the resistance of cancer cells to the effects of chemotherapy, poses a significant challenge in cancer treatment. Understanding the relationship between DDR and chemoresistance is vital for devising strategies to overcome this resistance and improve treatment outcomes. Long non-coding RNAs (lncRNAs) are a class of RNA molecules that do not code for proteins but play important roles in various biological processes, including cancer development and chemoresistance. RNA-binding proteins (RBPs) are a group of proteins that bind to RNA molecules and regulate their functions. The interaction between lncRNAs and RBPs has been found to regulate gene expression at the post-transcriptional level, thereby influencing various cellular processes, including DDR signaling pathways. Multiple studies have demonstrated that lncRNAs can interact with RBPs to modulate the expression of genes involved in cancer chemoresistance by impacting DDR signaling pathways. Conversely, RBPs can regulate the expression and function of lncRNAs involved in DDR. Exploring these interactions can provide valuable insights for the development of innovative therapeutic approaches to overcome chemoresistance in cancer patients. This review article aims to summarize recent research on the interaction between lncRNAs and RBPs during cancer chemotherapy, with a specific focus on DDR pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

DDR:

DNA damage response

RBPs:

RNA-binding proteins

SSBs:

Single-strand breaks

DSBs:

Double-strand breaks

BER:

Base excision repair

NER:

Nucleotide excision repair

MMR:

Mismatch repair

HR:

Homologous recombination

NHEJ:

Nonhomologous end joining

lncRNAs:

Long non-coding RNAs

MALAT1:

Metastasis-associated lung adenocarcinoma transcript 1

NEAT1:

Nuclear-enriched abundant transcript 1

HGBC:

Highly expressed in gallbladder carcinoma

HOTAIR:

HOX antisense intergenic RNA

RMRP:

RNA component of mitochondrial RNA processing endoribonuclease

TUG1:

Taurine upregulated 1

HULC:

Highly up-regulated in liver cancer

H19:

H19 imprinted maternally expressed transcript

TP53TG1:

TP53 target gene 1

ADAMTS9-AS2:

ADAM metallopeptidase with thrombospondin type 1 motif 9 antisense RNA 2

SNHG12:

Small nucleolar RNA host gene 12

Linc00672:

Long intergenic nonprotein-coding RNA

NSCLC:

Non-small cell lung cancer

CASC2:

Cancer susceptibility candidate 2

CDCA3:

Cell division cycle-associated protein 3

FUS:

Fused in sarcoma

TNBC:

Triple-negative breast cancer

ATM:

Ataxia-telangiectasia mutated

ATR:

ATM- and Rad3-related

CHK1 and CHK2:

Cell cycle checkpoint kinases 1 and 2

IAPs:

Inhibitor of apoptosis proteins

CRC:

Colorectal cancer

DOX:

Doxorubicin

PTX:

Paclitaxel

References

  1. Su M, Wang H, Wang W, Wang Y, Ouyang L, Pan C et al (2018) LncRNAs in DNA damage response and repair in cancer cells. Acta Biochim Biophys Sin 50(5):433–439

    Article  CAS  PubMed  Google Scholar 

  2. Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P et al (2016) p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 22(8):861–868

    Article  CAS  PubMed  Google Scholar 

  3. Özeş AR, Miller DF, Özeş ON, Fang F, Liu Y, Matei D et al (2016) NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene 35(41):5350–5361

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xiao H, Liu Y, Liang P, Wang B, Tan H, Zhang Y et al (2018) TP53TG1 enhances cisplatin sensitivity of non-small cell lung cancer cells through regulating miR-18a/PTEN axis. Cell Biosci 8(1):1–13

    Article  Google Scholar 

  5. Astanehe A, Finkbeiner M, Hojabrpour P, To K, Fotovati A, Shadeo A et al (2009) The transcriptional induction of PIK3CA in tumor cells is dependent on the oncoprotein Y-box binding protein-1. Oncogene 28(25):2406–2418

    Article  CAS  PubMed  Google Scholar 

  6. Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A et al (2016) Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci 113(47):E7535–E7544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen J, Zhu M, Zou L, Xia J, Huang J, Deng Q et al (2020) Long non-coding RNA LINC-PINT attenuates paclitaxel resistance in triple-negative breast cancer cells via targeting the RNA-binding protein NONO. Acta Biochim Biophys Sin 52(8):801–809

    Article  CAS  PubMed  Google Scholar 

  8. Abad E, Graifer D, Lyakhovich A (2020) DNA damage response and resistance of cancer stem cells. Cancer Lett 474:106–117

    Article  CAS  PubMed  Google Scholar 

  9. Bouwman P, Jonkers J (2012) The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12(9):587–598

    Article  CAS  PubMed  Google Scholar 

  10. van den Boogaard WMC, Komninos DSJ, Vermeij WP (2022) Chemotherapy side-effects: not all DNA damage is equal. Cancers 14(3):627

    Article  PubMed  PubMed Central  Google Scholar 

  11. Woods D, Turchi JJ (2014) Chemotherapy induced DNA damage response. Cancer Biol Ther 14(5):379–389

    Article  Google Scholar 

  12. Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khanna A (2015) DNA damage in cancer therapeutics: a boon or a curse? Can Res 75(11):2133–2138

    Article  CAS  Google Scholar 

  14. Goldstein M, Kastan MB (2015) The DNA damage response: implications for tumor responses to radiation and chemotherapy. Annu Rev Med 66(1):129–143

    Article  CAS  PubMed  Google Scholar 

  15. Lord CJ, Ashworth A (2012) The DNA damage response and cancer therapy. Nature 481(7381):287–294

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Kusakabe M, Onishi Y, Tada H, Kurihara F, Kusao K, Furukawa M et al (2019) Mechanism and regulation of DNA damage recognition in nucleotide excision repair. Genes Environ. https://doi.org/10.1186/s41021-019-0119-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Scharer OD (2013) Nucleotide excision repair in eukaryotes. Cold Spring Harbor Perspect Biol 5(10):a012609

    Article  Google Scholar 

  18. Spivak G (2015) Nucleotide excision repair in humans. DNA Repair 36:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Broustas CG, Lieberman HB (2014) DNA damage response genes and the development of cancer metastasis. Radiat Res 181(2):111–130

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baretti M, Le DT (2018) DNA mismatch repair in cancer. Pharmacol Ther 189:45–62

    Article  CAS  PubMed  Google Scholar 

  21. Annovazzi L, Mellai M, Schiffer D (2017) Chemotherapeutic drugs: DNA damage and repair in glioblastoma. Cancers 9(6):57

    Article  PubMed  PubMed Central  Google Scholar 

  22. Haynes B, Saadat N, Myung B, Shekhar MPV (2015) Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. Mutat Res Rev Mutat Res 763:258–266

    Article  CAS  PubMed  Google Scholar 

  23. Walsh CS (2015) Two decades beyond BRCA1/2: Homologous recombination, hereditary cancer risk and a target for ovarian cancer therapy. Gynecol Oncol 137(2):343–350

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Lu L-Y (2020) BRCA1 and homologous recombination: implications from mouse embryonic development. Cell Biosci. https://doi.org/10.1186/s13578-020-00412-4

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kennedy RD, Quinn JE, Mullan PB, Johnston PG, Harkin DP (2004) The role of brca1 in the cellular response to chemotherapy. JNCI J Natl Cancer Inst 96(22):1659–1668

    Article  CAS  PubMed  Google Scholar 

  26. Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7(18):2902–2906

    Article  CAS  PubMed  Google Scholar 

  27. Tiek D, Cheng S-Y (2022) DNA damage and metabolic mechanisms of cancer drug resistance. Cancer Drug Resistance 5(2):368–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang HHY, Pannunzio NR, Adachi N, Lieber MR (2017) Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol 18(8):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sishc B, Davis A (2017) The role of the core non-homologous end joining factors in carcinogenesis and cancer. Cancers 9(7):81

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mehta M, Raguraman R, Ramesh R, Munshi A (2022) RNA binding proteins (RBPs) and their role in DNA damage and radiation response in cancer. Adv Drug Deliv Rev 191:114569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montecucco A, Biamonti G (2013) Pre-mRNA processing factors meet the DNA damage response. Front Genet. https://doi.org/10.3389/fgene.2013.00102

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nishida K, Kuwano Y, Nishikawa T, Masuda K, Rokutan K (2017) RNA binding proteins and genome integrity. Int J Mol Sci 18(7):1341

    Article  PubMed  PubMed Central  Google Scholar 

  33. Stagni V, Orecchia S, Mignini L, Beji S, Antonioni A, Caggiano C et al (2022) DNA damage regulates the functions of the RNA binding protein Sam68 through ATM-dependent phosphorylation. Cancers 14(16):3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Naro C, Bielli P, Pagliarini V, Sette C (2015) The interplay between DNA damage response and RNA processing: the unexpected role of splicing factors as gatekeepers of genome stability. Front Genet. https://doi.org/10.3389/fgene.2015.00142

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R (2021) p53 mRNA metabolism links with the DNA damage response. Genes 12(9):1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kai M (2016) Roles of RNA-binding proteins in DNA damage response. Int J Mol Sci 17(3):310

    Article  PubMed  PubMed Central  Google Scholar 

  37. Klaric JA, Wüst S, Panier S (2021) New faces of old friends: emerging new roles of rna-binding proteins in the DNA double-strand break response. Front Mol Biosci 8:385

    Article  Google Scholar 

  38. Kim HH, Abdelmohsen K, Gorospe M (2010) Regulation of HuR by DNA damage response kinases. J Nucl Acids 2010:1–8

    Article  Google Scholar 

  39. Dutertre M, Lambert S, Carreira A, Amor-Guéret M, Vagner S (2014) DNA damage: RNA-binding proteins protect from near and far. Trends Biochem Sci 39(3):141–149

    Article  CAS  PubMed  Google Scholar 

  40. Huang R, Zhou P-K (2021) DNA damage repair: historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct Target Ther 6(1):1–35

    Google Scholar 

  41. Lu J, Huang Y, Zhang X, Xu Y, Nie S (2021) Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res 170:105520

    Article  CAS  PubMed  Google Scholar 

  42. Wang Yu, Zhou Peihong, Li Ping, Yang Fengxia, Gao Xue-qiang (2020) Long non-coding RNA H19 regulates proliferation and doxorubicin resistance in MCF-7 cells by targeting PARP1. Bioengineered 11(1):536–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlsen L, El-Deiry WS (2021) Differential p53-mediated cellular responses to DNA-damaging therapeutic agents. Int J Mol Sci 22(21):11828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dippold WG, Jay G, DeLeo AB, Khoury G, Old LJ (1981) p53 transformation-related protein: detection by monoclonal antibody in mouse and human cells. Proc Natl Acad Sci 78(3):1695–1699

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Enoch T, Norbury C (1995) Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem Sci 20(10):426–430

    Article  CAS  PubMed  Google Scholar 

  46. Giaccia AJ, Kastan MB (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev 12(19):2973–2983

    Article  CAS  PubMed  Google Scholar 

  47. Mazan-Mamczarz K, Galbán S, de Silanes IL, Martindale JL, Atasoy U, Keene JD et al (2003) RNA-binding protein HuR enhances p53 translation in response to ultraviolet light irradiation. Proc Natl Acad Sci 100(14):8354–8359

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y et al (2000) HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 20(3):760–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Masuda K, Abdelmohsen K, Kim MM, Srikantan S, Lee EK, Tominaga K et al (2011) Global dissociation of HuR–mRNA complexes promotes cell survival after ionizing radiation. EMBO J 30(6):1040–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mazan-Mamczarz K, Hagner PR, Zhang Y, Dai B, Lehrmann E, Becker KG et al (2011) ATM regulates a DNA damage response posttranscriptional RNA operon in lymphocytes. Blood J Am Soc Hematol 117(8):2441–2450

    CAS  Google Scholar 

  51. Chen J, Li Y, Li Z, Cao L (2020) LncRNA MST1P2/miR-133b axis affects the chemoresistance of bladder cancer to cisplatin-based therapy via Sirt1/p53 signaling. J Biochem Mol Toxicol 34(4):e22452

    Article  CAS  PubMed  Google Scholar 

  52. Fulda S (2012) Inhibitor of apoptosis (IAP) proteins as therapeutic targets for radiosensitization of human cancers. Cancer Treat Rev 38(6):760–766

    Article  CAS  PubMed  Google Scholar 

  53. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS (2005) XIAP inhibits caspase-3 and-7 using two binding sites: evolutionarily conserved mechanism of IAPs. EMBO J 24(3):645–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shiozaki EN, Chai J, Rigotti DJ, Riedl SJ, Li P, Srinivasula SM et al (2003) Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 11(2):519–527

    Article  CAS  PubMed  Google Scholar 

  55. Bruno T, De Nicola F, Iezzi S, Lecis D, D’Angelo C, Di Padova M et al (2006) Che-1 phosphorylation by ATM/ATR and Chk2 kinases activates p53 transcription and the G2/M checkpoint. Cancer Cell 10(6):473–486

    Article  CAS  PubMed  Google Scholar 

  56. Bruno T, Iezzi S, De Nicola F, Di Padova M, Desantis A, Scarsella M et al (2008) Che-1 activates XIAP expression in response to DNA damage. Cell Death Differ 15(3):515–520

    Article  CAS  PubMed  Google Scholar 

  57. Wang X, Qi G, Zhang J, Wu J, Zhou N, Li L et al (2017) Knockdown of long noncoding RNA small nucleolar RNA host gene 12 inhibits cell growth and induces apoptosis by upregulating miR-138 in nonsmall cell lung cancer. DNA Cell Biol 36(11):892–900

    Article  CAS  PubMed  Google Scholar 

  58. Zhou B, Li L, Li Y, Sun H, Zeng C (2018) Long noncoding RNA SNHG12 mediates doxorubicin resistance of osteosarcoma via miR-320a/MCL1 axis. Biomed Pharmacother 106:850–857

    Article  CAS  PubMed  Google Scholar 

  59. Lei W, Wang Z-L, Feng H-J, Lin X-D, Li C-Z, Fan D (2018) Long non-coding RNA SNHG12promotes the proliferation and migration of glioma cells by binding to HuR. Int J Oncol 53(3):1374–1384

    CAS  PubMed  Google Scholar 

  60. Lan T, Ma W, Hong Z, Wu L, Chen X, Yuan Y (2017) Long non-coding RNA small nucleolar RNA host gene 12 (SNHG12) promotes tumorigenesis and metastasis by targeting miR-199a/b-5p in hepatocellular carcinoma. J Exp Clin Cancer Res 36(1):1–10

    Article  Google Scholar 

  61. Xu Y, Shen M, Peng Y, Liu L, Tang L, Yang T et al (2022) Cell division cycle-associated protein 3 (CDCA3) is a potential biomarker for clinical prognosis and immunotherapy in pan-cancer. BioMed Res Int 2022:1–28

    Google Scholar 

  62. Liu Y, Cheng G, Huang Z, Bao L, Liu J, Wang C et al (2020) Long noncoding RNA SNHG12 promotes tumour progression and sunitinib resistance by upregulating CDCA3 in renal cell carcinoma. Cell Death Dis 11(7):1–17

    Article  CAS  Google Scholar 

  63. Tan D, Li G, Zhang P, Peng C, He B (2022) LncRNA SNHG12 in extracellular vesicles derived from carcinoma-associated fibroblasts promotes cisplatin resistance in non-small cell lung cancer cells. Bioengineered 13(1):1838–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heinrich B, Zhang Z, Raitskin O, Hiller M, Benderska N, Hartmann AM et al (2009) Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC (A/C)-rich regions in pre-mRNA. J Biol Chem 284(21):14303–14315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Song Y, He S, Ma X, Zhang M, Zhuang J, Wang G et al (2020) RBMX contributes to hepatocellular carcinoma progression and sorafenib resistance by specifically binding and stabilizing BLACAT1. Am J Cancer Res 10(11):3644

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Su J, Zhang E, Han L, Yin D, Liu Z, He X et al (2017) Long noncoding RNA BLACAT1 indicates a poor prognosis of colorectal cancer and affects cell proliferation by epigenetically silencing of p15. Cell Death Dis 8(3):e2665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. He W, Cai Q, Sun F, Zhong G, Wang P, Liu H et al (1832) (2013) Linc-UBC1 physically associates with polycomb repressive complex 2 (PRC2) and acts as a negative prognostic factor for lymph node metastasis and survival in bladder cancer. Biochimica et Biophysica Acta Mol Basis Dis 10:1528–37

    Google Scholar 

  68. Ju Z, Sun B, Bao D, Zhang X (2020) Effect of lncRNA-BLACAT1 on drug resistance of non-small cell lung cancer cells in DDP chemotherapy by regulating cyclin D1 expression. Eur Rev Med Pharmacol Sci 24(18):9465–9472

    PubMed  Google Scholar 

  69. Ferraris DV (2010) Evolution of poly (ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 53(12):4561–84

    Article  CAS  PubMed  Google Scholar 

  70. Pascal JM (2018) The comings and goings of PARP-1 in response to DNA damage. DNA Repair 71:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Pears CJ, Couto CA-M, Wang H-Y, Borer C, Kiely R, Lakin ND (2012) The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle 11(1):48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yang Y-G, Cortes U, Patnaik S, Jasin M, Wang Z-Q (2004) Ablation of PARP-1 does not interfere with the repair of DNA double-strand breaks, but compromises the reactivation of stalled replication forks. Oncogene 23(21):3872–3882

    Article  CAS  PubMed  Google Scholar 

  73. Audebert M, Salles B, Calsou P (2004) Involvement of poly (ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279(53):55117–55126

    Article  CAS  PubMed  Google Scholar 

  74. Paddock M, Bauman A, Higdon R, Kolker E, Takeda S, Scharenberg A (2011) Competition between PARP-1 and Ku70 control the decision between high-fidelity and mutagenic DNA repair. DNA Repair 10(3):338–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang J, Sun J, Yang F (2020) The role of long non-coding RNA H19 in breast cancer. Oncol Lett 19(1):7–16

    ADS  PubMed  Google Scholar 

  76. Wang X, Pei X, Guo G, Qian X, Dou D, Zhang Z et al (2020) Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer. J Cell Physiol 235(10):6896–6904

    Article  CAS  PubMed  Google Scholar 

  77. Zhu Q-N, Wang G, Guo Y, Peng Y, Zhang R, Deng J-L et al (2017) LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget 8(54):91990

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhu M, Yang L, Wang X (2020) NEAT1 knockdown suppresses the cisplatin resistance in ovarian cancer by regulating miR-770-5p/PARP1 axis. Cancer Manag Res 12:7277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaudreault I, Guay D, Lebel M (2004) YB-1 promotes strand separation in vitro of duplex DNA containing either mispaired bases or cisplatin modifications, exhibits endonucleolytic activities and binds several DNA repair proteins. Nucleic Acids Res 32(1):316–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chang Y, Mai R, Fang W, Lin C, Chiu C, Wu LY (2014) YB-1 disrupts mismatch repair complex formation, interferes with MutSα recruitment on mismatch and inhibits mismatch repair through interacting with PCNA. Oncogene 33(43):5065–5077

    Article  CAS  PubMed  Google Scholar 

  81. Kim ER, Selyutina AA, Buldakov IA, Evdokimova V, Ovchinnikov LP, Sorokin AV (2013) The proteolytic YB-1 fragment interacts with DNA repair machinery and enhances survival during DNA damaging stress. Cell Cycle 12(24):3791–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tang L, Wei D, Xu X, Mao X, Mo D, Yan L et al (2021) Long non-coding RNA MIR200CHG promotes breast cancer proliferation, invasion, and drug resistance by interacting with and stabilizing YB-1. NPJ Breast Cancer 7(1):94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Chung HK, Cheong C, Song J, Lee H-W (2005) Extratelomeric functions of telomerase. Curr Mol Med 5(2):233–241

    Article  CAS  PubMed  Google Scholar 

  84. Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ (2012) mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol Cell 47(1):5–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dai W, Mu L, Cui Y, Li Y, Chen P, Xie H et al (2019) Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/lymphoma 2 (Bcl-2) axis. Med Sci Monit Int Med J Exp Clin Res 25:730

    CAS  Google Scholar 

  86. Baldinu P, Cossu A, Manca A, Satta MP, Sini MC, Palomba G et al (2007) CASC2a gene is down-regulated in endometrial cancer. Anticancer Res 27(1A):235–243

    CAS  PubMed  Google Scholar 

  87. Huang G, Wu X, Li S, Xu X, Zhu H, Chen X (2016) The long noncoding RNA CASC2 functions as a competing endogenous RNA by sponging miR-18a in colorectal cancer. Sci Rep 6(1):1–11

    Google Scholar 

  88. Chaudhury A, Chander P, Howe PH (2010) Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: focus on hnRNP E1’s multifunctional regulatory roles. RNA 16(8):1449–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135(8):851–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Moumen A, Masterson P, O’Connor MJ, Jackson SP (2005) hnRNP K: an HDM2 target and transcriptional coactivator of p53 in response to DNA damage. Cell 123(6):1065–1078

    Article  CAS  PubMed  Google Scholar 

  91. Xu C, Xie N, Su Y, Sun Z, Liang Y, Zhang N et al (2020) HnRNP F/H associate with hTERC and telomerase holoenzyme to modulate telomerase function and promote cell proliferation. Cell Death Differ 27(6):1998–2013

    Article  CAS  PubMed  Google Scholar 

  92. Li W, Zheng J, Deng J, You Y, Wu H, Li N et al (2014) Increased levels of the long intergenic non–protein coding RNA POU3F3 promote DNA methylation in esophageal squamous cell carcinoma cells. Gastroenterology 146(7):1714-1726.e5

    Article  CAS  PubMed  Google Scholar 

  93. Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X et al (2010) Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 28(5):503–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP (2011) Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147(7):1537–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li W, Li H, Zhang L, Hu M, Li F, Deng J et al (2017) Long non-coding RNA LINC00672 contributes to p53 protein-mediated gene suppression and promotes endometrial cancer chemosensitivity. J Biol Chem 292(14):5801–5813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen M, Foster JP, Lock IC, Leisenring NH, Daniel AR, Floyd W et al (2021) Radiation-induced phosphorylation of a prion-like domain regulates transformation by FUS-CHOPPhosphorylation of FUS-CHOP regulates transformation. Can Res 81(19):4939–4948

    Article  CAS  Google Scholar 

  97. Li Y, Wan Q, Wang W, Mai L, Sha L, Mashrah M et al (2019) LncRNA ADAMTS9-AS2 promotes tongue squamous cell carcinoma proliferation, migration and EMT via the miR-600/EZH2 axis. Biomed Pharmacother 112:108719

    Article  CAS  PubMed  Google Scholar 

  98. Xu W, Wang B, Cai Y, Chen J, Lv X, Guo C et al (2021) ADAMTS9-AS2: a functional long non-coding RNA in tumorigenesis. Curr Pharm Des 27(23):2722–2727

    Article  CAS  PubMed  Google Scholar 

  99. Shi Y, Lu H, Wang H (2019) Downregulated lncRNA ADAMTS9-AS2 in breast cancer enhances tamoxifen resistance by activating microRNA-130a-5p. Eur Rev Med Pharmacol Sci 23(4):1563–1573

    PubMed  Google Scholar 

  100. Yan Y, Xu Z, Chen X, Wang X, Zeng S, Zhao Z et al (2019) Novel function of lncRNA ADAMTS9-AS2 in promoting temozolomide resistance in glioblastoma via upregulating the FUS/MDM2 ubiquitination axis. Front Cell Dev Biol 7:217

    Article  ADS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HSH, FA, YP, and FH: wrote the draft and revised it. HSH and BY: designed and supervised the study. SFT, VV, MM, and MGH: collected the data and designed the figures. All the authors read and approved the submitted version.

Corresponding authors

Correspondence to Hamed Shoorei or Mohammad Taheri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alemi, F., Poornajaf, Y., Hosseini, F. et al. Interaction between lncRNAs and RNA-binding proteins (RBPs) influences DNA damage response in cancer chemoresistance. Mol Biol Rep 51, 308 (2024). https://doi.org/10.1007/s11033-024-09288-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09288-w

Keywords

Navigation