Repetitive transcranial magnetic stimulation alleviates glial activation through suppressing HMGB1/TLR4 pathway in a rat model of Parkinson’s disease

Author:

Han ChaoORCID,Zhang XueORCID,Dou KaixinORCID,Yao WeichaoORCID,Yao MinyiORCID,Wan QiORCID,Xie AnmuORCID

Abstract

Abstract Background Repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to be effective in Parkinson’s disease (PD), but whether rTMS treatment has a relieving effect on neuroinflammation remains to be investigated. In this article, we explored the effects of rTMS on forelimb use asymmetry and neuroinflammation-related mechanisms in a 6-hydroxydopamine (6-OHDA)-induced PD rat model. Methods and results Rats in the 6-OHDA+rTMS group received 10 Hz rTMS daily for 4 weeks. Behavioral tests (the cylinder test) were performed at the 3rd and 7th weeks after the operation. Astrocyte and microglia activation and protein levels of tyrosine hydroxylase(TH), high-mobility group box 1(HMGB1) and toll-like receptors 4(TLR4) were investigated by immunohistochemistry and Western blot analyses, respectively. After 4 weeks of treatment, forelimb use asymmetry was ameliorated in the 6-OHDA+rTMS group. Consistent with the behavioral tests, rTMS increased TH in the substantia nigra (SN) and the striatum of PD rats. High glial activation and HMGB1/TLR4 expression in the SN and the striatum were observed in the 6-OHDA group, while rTMS alleviated these changes. Conclusions This study showed that rTMS might be a promising method for alleviating neuroinflammation in PD rat models, and the effects might be mediated through the downregulation of the HMGB1/TLR4 pathway.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,General Medicine

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3