Mathematical modelling of stability problems for thin transversally graded cylindrical shells

Author:

Tomczyk B.,Gołąbczak M.,Kubacka E.,Bagdasaryan V.

Abstract

AbstractThe objects of consideration are thin linearly elastic Kirchhoff–Love-type open circular cylindrical shells having a functionally graded macrostructure and a tolerance-periodic microstructure in circumferential direction. The first aim of this contribution is to formulate and discuss a new mathematical averaged non-asymptotic model for the analysis of selected stability problems for such shells. As a tool of modelling we shall apply the tolerance averaging technique. The second aim is to derive and discuss a new mathematical averaged asymptotic model. This model will be formulated using the consistent asymptotic modelling procedure. The starting equations are the well-known governing equations of linear Kirchhoff–Love second-order theory of thin elastic cylindrical shells. For the functionally graded shells under consideration, the starting equations have highly oscillating, non-continuous and tolerance-periodic coefficients in circumferential direction, whereas equations of the proposed models have continuous and slowly-varying coefficients. Moreover, some of coefficients of the tolerance model equations depend on a microstructure size. It will be shown that in the framework of the tolerance model not only the fundamental cell-independent, but also the new additional cell-dependent critical forces can be derived and analysed.

Publisher

Springer Science and Business Media LLC

Reference48 articles.

1. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. The University Press, Cambridge (1998)

2. Bensoussan, A., Lions, J.L., Papanicolau, G.: Asymptotic Analysis for Periodic Structures. North-Holland Publishing, Amsterdam (1978)

3. Jikov, V.V., Kozlov, C.M., Olejnik, O.A.: Homogenization of Differential Operators And Integral Functionals. Springer, Berlin (1994)

4. Lutoborski, A.: Homogenization of linear elastic shells. J. Elasticity 15, 69–87 (1985)

5. Lewiński, T., Telega, J.J.: Plates, Laminates and Shells. Asymptotic Analysis and Homogenization. World Scientific Publishing Company, Singapore (2000)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3