Dynamic large strain formulation for nematic liquid crystal elastomers

Author:

Concas FrancescaORCID,Groß Michael

Abstract

AbstractLiquid crystal elastomers (LCEs) are a class of materials which exhibit an anisotropic behavior in their nematic state due to the main orientation of their rod-like molecules called mesogens. The reorientation of mesogens leads to the well-known actuation properties of LCEs, i.e. exceptionally large deformations as a consequence of particular external stimuli, such as temperature increase. Another key feature of nematic LCEs is the capability to undergo deformation by constant stresses while being stretched in a direction perpendicular to the orientation of mesogens. During this plateau stage, the mesogens rotate towards the stretching direction. Such characteristic is defined as semisoft elastic response of nematic LCEs. We aim at modeling the semisoft behavior in a dynamic finite element method based on a variational-based mixed finite element formulation. The reorientation process of the rigid mesogens relative to the continuum rotation is introduced by micropolar drilling degrees of freedom. Responsible for the above-mentioned characteristics is an appropriate free energy function. Starting from an isothermal free energy function based on the small strain theory, we aim to widen it into the framework of large strains by identifying tensor invariants. In this work, we analyze the isothermal influence of the tensor invariants on the mechanical response of the finite element formulation and show that its space-time discretization preserves mechanical balance laws in the discrete setting.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Chemnitz

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3