Simulation of reduction of oxidized metal nanoparticles

Author:

Zhdanov Vladimir P.ORCID

Abstract

AbstractI analyze theoretically the spatio-temporal kinetics of reduction of oxidized metal nanoparticles by hydrogen (or methane). The focus is on the experimentally observed formation of metal and oxide domains separated partly by pores. The interpretation of such multiphase processes in nanoparticles at the mean-field level is hardly possible primarily due to complex geometry, and accordingly I use the lattice Monte Carlo technique in order to tackle this problem. The main conclusions drawn from the corresponding generic simulations are as follows. (i) The patterns predicted are fairly sensitive to the metal-metal and metal-oxygen interactions. With decreasing the former interaction and increasing the latter interaction, there is transition from the formation of metal aggregates and voids to the formation of a metal film around the oxide core. (ii) During the initial phase of these kinetics, the extent of reduction can roughly be described by using the power law, and the corresponding exponent is about 0.3. (iii) With decreasing the hydrogen (or methane) pressure and/or increasing the oxide nanoparticle size, as expected, the kinetics are predicted to become longer. (iv) The dependence of the patterns on the presence of the support and/or Kirkendall void in an oxide nanoparticle is shown as well.

Funder

Ministry of Science and Higher Education of the Russian Federation within the governmental order for Boreskov Institute of Catalysis

Chalmers University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3