1. Ahmed, A. M., & Shah, S. M. A. (2015). Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. Journal of King Saud University—Engineering Sciences.
2. Ahmadi, A., Han, D., Karamouz, M., & Remesan, R. (2009). Input data selection for solar radiation estimation. Hydrological processes, 23(19), 2754-2764.
3. Asagha, E. N., Udo, S. O., & Echi, I. M. (2014). Modeling and simulation of global solar radiation in Warri, Nigeria using gamma test and artificial neural network algorithms. International Journal of Innovative Research and Development|| ISSN 2278–0211.
4. Baek, G., Cheon, S.-P., Kim, S., Kim, Y., Kim, H., Kim, C., & Kim, S. (2012). Modular neural networks prediction model based A2/O process control system. International Journal of Precision Engineering and Manufacturing, 13(6), 905–913.
5. Baghvand, A., Nokhandan, A. K., & Kerachian, R. (2006). Design of river a water quality monitoring network: an entropy based approach. World Environmental and Water Resources Congress 2006.