Performance assessment and process optimization of a sulfur recovery unit: a real starting up plant

Author:

Ibrahim Ahmed Y.,Ashour Fatma H.,Gadalla Mamdouh A.,Abdelhaleem Amal

Abstract

AbstractSulfur recovery units (SRU) have an important role in the industrial production of elemental sulfur from hydrogen sulfide, whereas the generated acidic gas emissions must be controlled and treated based on local and international environmental regulations. Herein, Aspen HYSYS V.11 with Sulsim software is used to simulate the industrial and treatment processes in a refinery plant in the Middle East. In the simulation models, in temperature, pressure, flow, energy, and gas emissions were monitored to predict any expected change that could occur during the industrial processes. The simulation models were validated by comparing the obtained data with actual industrial data, and the results showed low deviation values. The simulation results showed that the current process temperature conditions can work efficiently for sulfur production without causing any environmental consequences. Interestingly, the simulation results revealed that sulfur can be produced under the optimized temperature conditions (20° less than design temperatures) with a total amount of steam reduction by 1040.12 kg/h and without any negative impact on the environment. The steam reduction could have a great economic return, where an average cost of 7.6 $ per ton could be saved with a total estimated cost savings by 69,247.03 $ per year. The simulation revealed an inaccurate production capacity calculated by real data in the plant during the performance test guarantee (PTG) where the real data achieved around 1 ton/h higher capacity than the simulation result, with an overall recovery efficiency of 99.96%. Based on this significant result, a solution was raised, and the level transmitters were calibrated, then the test was repeated. The simulation models could be very useful for engineers to investigate and optimize the reaction conditions during the industrial process in sulfur production facilities. Hence, the engineers can utilize these models to recognize any potential problem, thereby providing effective and fast solutions. Additionally, the simulation models could participate in assessing the performance test guarantee (PTG) calculations provided by the contractor.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Pollution,General Environmental Science,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluating the carbon footprint of sulphur recovery unit: A comprehensive analysis;Journal of Environmental Chemical Engineering;2024-04

2. Co-Combustion of Acid Gas and Hydrogen in the Claus Process for Efficient Sulfur Production, Contaminant Destruction, and Low Carbon Emissions;2024

3. Modeling and simulation of sulfur recovery unit;Advances Natural Gas: Formation, Processing, and Applications. Volume 8: Natural Gas Process Modelling and Simulation;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3