Characterization of various acrylate based artificial teeth for denture fabrication

Author:

Muhammad Nawshad,Sarfraz Zenab,Zafar Muhammad Sohail,Liaqat Saad,Rahim Abdur,Ahmad Pervaiz,Alsubaie Abdullah,Almalki Abdulraheem S. A.,Khandaker Mayeen Uddin

Abstract

AbstractAcrylic resins-based artificial teeth are frequently used for the fabrication of dentures has and contribute a very strong share in the global market. However, the scientific literature reporting the comparative analysis data of various artificial teeth is scarce. Focusing on that, the present study investigated various types of commercially available artificial teeth, composed of polymethyl methacrylate (PMMA). Artificial teeth are characterized for chemical analysis, morphological features, thermal analysis, and mechanical properties (surface hardness, compressive strength). Different types of artificial teeth showed distinct mechanical (compression strength, Vickers hardness) and thermal properties (thermal gravimetric analysis) which may be attributed to the difference in the content of PMMA and type and quantity of different fillers in their composition. Thermogravimetric analysis (TGA) results exhibited that vinyl end groups of PMMA degraded above 200 °C, whereas 340–400 °C maximum degradation temperature was measured by differential thermal analysis (DTA) for all samples. Crisma brand showed the highest compressive strength and young modulus (88.6 MPaand 1654 MPa)while the lowest value of Vickers hardness was demonstrated by Pigeon and Vital brands. Scanning electron microscope (SEM) photographs showed that Crisma, Pigeon, and Vital exhibited characteristics of a brittle fracture; however, Artis and Well bite brands contained elongated voids on their surfaces. According to the mechanical analysis and SEM data, Well bite teeth showed a significantly higher mechanical strength compared to other groups. However, no considerable difference was observed in Vickers hardness of all groups.

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3