Bone induction and defect repair by true bone ceramics incorporated with rhBMP-2 and Sr

Author:

Zhang Chunli,Xu GangORCID,Han Liwei,Hu Xiantong,Zhao Yantao,Li Zhonghai

Abstract

AbstractObjective: To study the bone induction and defect repair of true bone ceramics (TBC) combined with rhBMP-2 and Sr. Methods: MC3T3-E1 cells were used to evaluate the bioactivity of the composite. Cell proliferation activity was detected by CCK-8, ALP activity was detected by p-nitrophenyl phosphate (PNPP), and the differences of material surface topography were observed by scanning electron microscopy (SEM). Bone induction was verified by the implantation in nude mice. The rabbit femoral condyle defect model was achieved to verify the bone defect repair ability of the material. Results: SEM results showed nearly the same surface morphology and cell proliferation quantified by CCK-8 showed that compared with TBC, both TBC&Sr and TBC&BMP-2&Sr had a significant promoting effect (P < 0.05). ALP activity result showed that the ALP activity of TBC&BMP-2&Sr was significantly higher than that of TBC alone (P < 0.05). The bone induction result showed that TBC&Sr had a small amount of new bone formation, and the new bone area was only 2.5 ± 0.11%. The bone induction activity of TBC&BMP-2&Sr was the highest, the new bone area was up to 75.36 ± 4.21%. Histological result of bone defect repair showed that TBC&BMP-2&Sr was also the highest, the new bone area was up to 72.42 ± 3.14%. The repair effect of TBC& BMP-2 was second, and better than that of TBC&Sr. Conclusion: TBC combined with rhBMP-2 and Sr had the good bioactivity, obvious bone conduction and bone defect repair performance, laying the foundation of clinical application potentially.

Funder

National Natural Science Foundation of China

Military Medical Project

Natural Science Foundation of Liaoning Province

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3