Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions

Author:

Wu PeizhengORCID,Yanagi Kazuya,Yokota Kazuki,Hakamada Masataka,Mabuchi Mamoru

Abstract

AbstractA variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs. Graphical Abstract

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Biomedical Engineering,Biomaterials,Bioengineering,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3