Developing a new tool for scoliosis screening in a tertiary specialistic setting using artificial intelligence: a retrospective study on 10,813 patients: 2023 SOSORT award winner

Author:

Negrini FrancescoORCID,Cina Andrea,Ferrario Irene,Zaina FabioORCID,Donzelli Sabrina,Galbusera Fabio,Negrini Stefano

Abstract

Abstract Purpose The study aims to assess if the angle of trunk rotation (ATR) in combination with other readily measurable clinical parameters allows for effective non-invasive scoliosis screening. Methods We analysed 10,813 patients (4–18 years old) who underwent clinical and radiological evaluation for scoliosis in a tertiary clinic specialised in spinal deformities. We considered as predictors ATR, Prominence (mm), visible asymmetry of the waist, scapulae and shoulders, familiarity, sex, BMI, age, menarche, and localisation of the curve. We implemented a Logistic Regression model to classify the Cobb angle of the major curve according to thresholds of 15, 20, 25, 30, and 40 degrees, by randomly splitting the dataset into 80–20% for training and testing, respectively. Results The model showed accuracies of 74, 81, 79, 79, and 84% for 15-, 20-, 25-, 30- and 40-degrees thresholds, respectively. For all the thresholds ATR, Prominence, and visible asymmetry of the waist were the top five most important variables for the prediction. Samples that were wrongly classified as negatives had always statistically significant (p ≪ 0.01) lower values of ATR and Prominence. This confirmed that these two parameters were very important for the correct classification of the Cobb angle. The model showed better performances than using the 5 and 7 degrees ATR thresholds to prescribe a radiological examination. Conclusions Machine-learning-based classification models have the potential to effectively improve the non-invasive screening for AIS. The results of the study constitute the basis for the development of easy-to-use tools enabling physicians to decide whether to prescribe radiographic imaging.

Funder

Università degli Studi dell'Insubria

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3