Skip to main content

Advertisement

Log in

Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation

  • REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Silvestri, R., Nicolì, V., Gangadharannambiar, P., Crea, F., & Bootman, M. D. (2023). Calcium signalling pathways in prostate cancer initiation and progression. Nature Reviews Urology. https://doi.org/10.1038/s41585-023-00738-x

    Article  PubMed  Google Scholar 

  2. Rebello, R. J., Pearson, R. B., Hannan, R. D., & Furic, L. (2017). Therapeutic approaches targeting MYC-driven prostate cancer. Genes, 8, 71.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Taichman, R. S., Loberg, R. D., Mehra, R., & Pienta, K. J. (2007). The evolving biology and treatment of prostate cancer. The Journal of clinical investigation, 117, 2351–2361. https://doi.org/10.1172/jci31791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crawford, E. D., Heidenreich, A., Lawrentschuk, N., Tombal, B., Pompeo, A. C. L., Mendoza-Valdes, A., Miller, K., Debruyne, F. M. J., & Klotz, L. (2019). Androgen-targeted therapy in men with prostate cancer: Evolving practice and future considerations. Prostate cancer and prostatic diseases, 22, 24–38. https://doi.org/10.1038/s41391-018-0079-0

    Article  PubMed  Google Scholar 

  5. Ehsani, M., David, F. O., Baniahmad, A. (2021). Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers. 13. https://doi.org/10.3390/cancers13071534

  6. Hoang, D. T., Iczkowski, K. A., Kilari, D., See, W., & Nevalainen, M. T. (2017). Androgen receptor-dependent and -independent mechanisms driving prostate cancer progression: Opportunities for therapeutic targeting from multiple angles. Oncotarget, 8, 3724–3745. https://doi.org/10.18632/oncotarget.12554

    Article  PubMed  Google Scholar 

  7. Merkens, L., Sailer, V., Lessel, D., Janzen, E., Greimeier, S., Kirfel, J., Perner, S., Pantel, K., Werner, S., & von Amsberg, G. (2022). Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. Journal of experimental & clinical cancer research : CR, 41, 46. https://doi.org/10.1186/s13046-022-02255-y

    Article  CAS  PubMed Central  Google Scholar 

  8. Montironi, R., Cimadamore, A., Lopez-Beltran, A., Scarpelli, M., Aurilio, G., Santoni, M., Massari, F., Cheng, L. (2020). Morphologic, molecular and clinical features of aggressive variant prostate cancer. Cells 9. https://doi.org/10.3390/cells9051073

  9. Coleman, W. B. (2018). Chapter 25 — Molecular pathogenesis of prostate cancer. In Molecular pathology (Second Edition), Coleman, W.B., Tsongalis, G.J., Eds.; Academic Press. pp. 555–568.

  10. Avkshtol, V., Ruth, K. J., Ross, E. A., Hallman, M. A., Greenberg, R. E., Price, R. A., Jr., Leachman, B., Uzzo, R. G., Ma, C., Chen, D., et al. (2020). Ten-year update of a randomized, prospective trial of conventional fractionated versus moderate hypofractionated radiation therapy for localized prostate cancer. Journal of clinical oncology : Official journal of the American Society of Clinical Oncology, 38, 1676–1684. https://doi.org/10.1200/jco.19.01485

    Article  PubMed  Google Scholar 

  11. Hagiwara, M., Fushimi, A., Yamashita, N., Bhattacharya, A., Rajabi, H., Long, M. D., Yasumizu, Y., Oya, M., Liu, S., & Kufe, D. (2021). MUC1-C activates the PBAF chromatin remodeling complex in integrating redox balance with progression of human prostate cancer stem cells. Oncogene, 40, 4930–4940. https://doi.org/10.1038/s41388-021-01899-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hagiwara, M., Fushimi, A., Bhattacharya, A., Yamashita, N., Morimoto, Y., Oya, M., Withers, H. G., Hu, Q., Liu, T., Liu, S., et al. (2022). MUC1-C integrates type II interferon and chromatin remodeling pathways in immunosuppression of prostate cancer. Oncoimmunology, 11, 2029298. https://doi.org/10.1080/2162402x.2022.2029298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang, Y., Liu, L., Li, M., Cheng, X., Fang, M., Zeng, Q., & Xu, Y. (2019). The chromatin remodeling protein BRG1 links ELOVL3 trans-activation to prostate cancer metastasis. Biochimica et biophysica acta. Gene Regulatory Mechanisms, 1862, 834–845. https://doi.org/10.1016/j.bbagrm.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  14. Zhao, D., Zhang, M., Huang, S., Liu, Q., Zhu, S., Li, Y., Jiang, W., Kiss, D. L., Cao, Q., Zhang, L., et al. (2022). CHD6 promotes broad nucleosome eviction for transcriptional activation in prostate cancer cells. Nucleic Acids Research, 50, 12186–12201. https://doi.org/10.1093/nar/gkac1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding, Y., Li, N., Dong, B., Guo, W., Wei, H., Chen, Q., Yuan, H., Han, Y., Chang, H., Kan, S., et al. (2019). Chromatin remodeling ATPase BRG1 and PTEN are synthetic lethal in prostate cancer. The Journal of clinical investigation, 129, 759–773. https://doi.org/10.1172/jci123557

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rajwa, P., Quhal, F., Pradere, B., Gandaglia, G., Ploussard, G., Leapman, M. S., Gore, J. L., Paradysz, A., Tilki, D., Merseburger, A. S., et al. (2023). Prostate cancer risk, screening and management in patients with germline BRCA1/2 mutations. Nature Reviews Urology, 20, 205–216. https://doi.org/10.1038/s41585-022-00680-4

    Article  CAS  PubMed  Google Scholar 

  17. Loeb, S., & Giri, V. N. (2021). Clinical implications of germline testing in newly diagnosed prostate cancer. European urology oncology, 4, 1–9. https://doi.org/10.1016/j.euo.2020.11.011

    Article  PubMed  Google Scholar 

  18. Oh, M., Alkhushaym, N., Fallatah, S., Althagafi, A., Aljadeed, R., Alsowaida, Y., Jeter, J., Martin, J. R., Babiker, H. M., McBride, A., et al. (2019). The association of BRCA1 and BRCA2 mutations with prostate cancer risk, frequency, and mortality: A meta-analysis. The Prostate, 79, 880–895. https://doi.org/10.1002/pros.23795

    Article  CAS  PubMed  Google Scholar 

  19. Pritchard, C. C., Mateo, J., Walsh, M. F., De Sarkar, N., Abida, W., Beltran, H., Garofalo, A., Gulati, R., Carreira, S., Eeles, R., et al. (2016). Inherited DNA-repair gene mutations in men with metastatic prostate cancer. The New England Journal of Medicine, 375, 443–453. https://doi.org/10.1056/NEJMoa1603144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shore, N., Oliver, L., Shui, I., Gayle, A., Wong, O. Y., Kim, J., Payne, S., Amin, S., & Ghate, S. (2021). Systematic literature review of the epidemiology of advanced prostate cancer and associated homologous recombination repair gene alterations. The Journal of urology, 205, 977–986. https://doi.org/10.1097/ju.0000000000001570

    Article  PubMed  Google Scholar 

  21. Wang, Z., Wang, T., Hong, D., Dong, B., Wang, Y., Huang, H., Zhang, W., Lian, B., Ji, B., Shi, H., et al. (2022). Single-cell transcriptional regulation and genetic evolution of neuroendocrine prostate cancer. iScience, 25, 104576. https://doi.org/10.1016/j.isci.2022.104576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lv, S., Wu, Z., Luo, M., Zhang, Y., Zhang, J., Pascal, L. E., Wang, Z., & Wei, Q. (2022). Integrated analysis reveals FOXA1 and Ku70/Ku80 as targets of ivermectin in prostate cancer. Cell Death & Disease, 13, 754. https://doi.org/10.1038/s41419-022-05182-0

    Article  CAS  Google Scholar 

  23. Tang, D. G. (2022). Understanding and targeting prostate cancer cell heterogeneity and plasticity. Seminars in Cancer Biology, 82, 68–93. https://doi.org/10.1016/j.semcancer.2021.11.001

    Article  CAS  PubMed  Google Scholar 

  24. Cyrta, J., Prandi, D., Arora, A., Hovelson, D. H., Sboner, A., Rodriguez, A., Fedrizzi, T., Beltran, H., Robinson, D. R., Gopalan, A., et al. (2022). Comparative genomics of primary prostate cancer and paired metastases: Insights from 12 molecular case studies. The Journal of pathology, 257, 274–284. https://doi.org/10.1002/path.5887

    Article  CAS  PubMed  Google Scholar 

  25. Sun, G., Ma, S., Zheng, Z., Wang, X., Chen, S., Chang, T., Liang, Z., Jiang, Y., Xu, S., & Liu, R. (2022). Multi-omics analysis of expression and prognostic value of NSUN members in prostate cancer. Frontiers in Oncology, 12, 965571. https://doi.org/10.3389/fonc.2022.965571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jia, D., Zhou, Z., Kwon, O. J., Zhang, L., Wei, X., Zhang, Y., Yi, M., Roudier, M. P., Regier, M. C., Dumpit, R., et al. (2022). Stromal FOXF2 suppresses prostate cancer progression and metastasis by enhancing antitumor immunity. Nature Communications, 13, 6828. https://doi.org/10.1038/s41467-022-34665-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang, M., He, Y., Liu, C., Lin, R., Huang, X., Liang, D., Zhang, J., & Lu, Y. (2022). Downregulation of SEPTIN5 inhibits prostate cancer progression by increasing CD8(+) T cell infiltration. International Journal of Biological Sciences, 18, 6035–6051. https://doi.org/10.7150/ijbs.76573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding, L., Wang, R., Zheng, Q., Shen, D., Wang, H., Lu, Z., Luo, W., Xie, H., Ren, L., Jiang, M., et al. (2022). circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA. Journal of Experimental & Clinical Cancer Research : CR, 41, 187. https://doi.org/10.1186/s13046-022-02391-5

    Article  CAS  PubMed Central  Google Scholar 

  29. Li, Z., Li, B., Yu, H., Wang, P., Wang, W., Hou, P., Li, M., Chu, S., Zheng, J., Mao, L., et al. (2022). DNMT1-mediated epigenetic silencing of TRAF6 promotes prostate cancer tumorigenesis and metastasis by enhancing EZH2 stability. Oncogene, 41, 3991–4002. https://doi.org/10.1038/s41388-022-02404-9

    Article  CAS  PubMed  Google Scholar 

  30. Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575, 299–309. https://doi.org/10.1038/s41586-019-1730-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldie, J. H., & Coldman, A. J. (1984). The genetic origin of drug resistance in neoplasms: Implications for systemic therapy. Cancer Research, 44, 3643–3653.

    CAS  PubMed  Google Scholar 

  32. Fisher, B., Slack, N. H., & Bross, I. D. (1969). Cancer of the breast: Size of neoplasm and prognosis. Cancer, 24, 1071–1080. https://doi.org/10.1002/1097-0142(196911)24:5%3c1071::aid-cncr2820240533%3e3.0.co;2-h

    Article  CAS  PubMed  Google Scholar 

  33. Skipper, H. E., Schabel, F. M., Jr., & Wilcox, W. S. (1964). Experimental evaluation of potential anticancer agents. XIII. On the criteria and kinetics associated with “curability” of experimental leukemia. Cancer Chemotherapy Reports, 35, 1–111.

    CAS  PubMed  Google Scholar 

  34. Goldie, J. H., & Coldman, A. J. (1979). A mathematic model for relating the drug sensitivity of tumors to their spontaneous mutation rate. Cancer Treatment Reports, 63, 1727–1733.

    CAS  PubMed  Google Scholar 

  35. Luria, S. E., & Delbrück, M. (1943). Mutations of bacteria from virus sensitivity to virus resistance. Genetics, 28, 491–511. https://doi.org/10.1093/genetics/28.6.491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tannock, I. F. (2015). Cancer: Resistance through repopulation. Nature, 517, 152–153. https://doi.org/10.1038/nature14075

    Article  CAS  PubMed  Google Scholar 

  37. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science (New York, N.Y.), 194, 23–28. https://doi.org/10.1126/science.959840

    Article  CAS  PubMed  Google Scholar 

  38. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A., Behjati, S., Biankin, A. V., Bignell, G. R., Bolli, N., Borg, A., Børresen-Dale, A. L., et al. (2013). Signatures of mutational processes in human cancer. Nature, 500, 415–421. https://doi.org/10.1038/nature12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396, 643–649. https://doi.org/10.1038/25292

    Article  CAS  PubMed  Google Scholar 

  40. Stephens, P. J., Greenman, C. D., Fu, B., Yang, F., Bignell, G. R., Mudie, L. J., Pleasance, E. D., Lau, K. W., Beare, D., Stebbings, L. A., et al. (2011). Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell, 144, 27–40. https://doi.org/10.1016/j.cell.2010.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sansregret, L., Vanhaesebroeck, B., & Swanton, C. (2018). Determinants and clinical implications of chromosomal instability in cancer. Nature Reviews. Clinical Oncology, 15, 139–150. https://doi.org/10.1038/nrclinonc.2017.198

    Article  CAS  PubMed  Google Scholar 

  42. Jain, R. K. (2005). Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science (New York, N.Y.), 307, 58–62. https://doi.org/10.1126/science.1104819

    Article  CAS  PubMed  Google Scholar 

  43. Minchinton, A. I., & Tannock, I. F. (2006). Drug penetration in solid tumours. Nature Reviews. Cancer, 6, 583–592. https://doi.org/10.1038/nrc1893

    Article  CAS  PubMed  Google Scholar 

  44. Makker, V., Rasco, D., Vogelzang, N. J., Brose, M. S., Cohn, A. L., Mier, J., Di Simone, C., Hyman, D. M., Stepan, D. E., Dutcus, C. E., et al. (2019). Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer: An interim analysis of a multicentre, open-label, single-arm, phase 2 trial. The Lancet. Oncology, 20, 711–718. https://doi.org/10.1016/s1470-2045(19)30020-8

    Article  CAS  PubMed  Google Scholar 

  45. Rini, B. I., Plimack, E. R., Stus, V., Gafanov, R., Hawkins, R., Nosov, D., Pouliot, F., Alekseev, B., Soulières, D., Melichar, B., et al. (2019). Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. The New England Journal of Medicine, 380, 1116–1127. https://doi.org/10.1056/NEJMoa1816714

    Article  CAS  PubMed  Google Scholar 

  46. Liu, H. J., & Xu, P. (2022). Strategies to overcome/penetrate the BBB for systemic nanoparticle delivery to the brain/brain tumor. Advanced Drug Delivery Reviews, 191, 114619. https://doi.org/10.1016/j.addr.2022.114619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews Cancer, 13, 714–726. https://doi.org/10.1038/nrc3599

    Article  CAS  PubMed  Google Scholar 

  48. Mirzaei, S., Gholami, M. H., Hashemi, F., Zabolian, A., Farahani, M. V., Hushmandi, K., Zarrabi, A., Goldman, A., Ashrafizadeh, M., & Orive, G. (2022). Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and prospects. Drug Discovery Today, 27, 436–455. https://doi.org/10.1016/j.drudis.2021.09.020

    Article  CAS  PubMed  Google Scholar 

  49. Gottesman, M. M., Fojo, T., & Bates, S. E. (2002). Multidrug resistance in cancer: Role of ATP–dependent transporters. Nature Reviews Cancer, 2, 48–58.

    Article  CAS  PubMed  Google Scholar 

  50. Ambudkar, S. V., Dey, S., Hrycyna, C. A., Ramachandra, M., Pastan, I., & Gottesman, M. M. (1999). Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annual Review of Pharmacology and Toxicology, 39, 361–398.

    Article  CAS  PubMed  Google Scholar 

  51. Choi, C.-H. (2005). ABC transporters as multidrug resistance mechanisms and the development of chemosensitizers for their reversal. Cancer Cell International, 5, 1–13.

    Article  CAS  Google Scholar 

  52. Thomas, H., & Coley, H. M. (2003). Overcoming multidrug resistance in cancer: An update on the clinical strategy of inhibiting p-glycoprotein. Cancer Control, 10, 159–165.

    Article  PubMed  Google Scholar 

  53. Pusztai, L., Wagner, P., Ibrahim, N., Rivera, E., Theriault, R., Booser, D., Symmans, F. W., Wong, F., Blumenschein, G., & Fleming, D. R. (2005). Phase II study of tariquidar, a selective P-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breast carcinoma. Cancer, 104, 682–691.

    Article  CAS  PubMed  Google Scholar 

  54. Meijer, C., Mulder, N. H., Timmer-Bosscha, H., Sluiter, W. J., Meersma, G. J., & de Vries, E. G. (1992). Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Research, 52, 6885–6889.

    CAS  PubMed  Google Scholar 

  55. Schwartz, P. M., Moir, R. D., Hyde, C. M., Turek, P. J., & Handschumacher, R. E. (1985). Role of uridine phosphorylase in the anabolism of 5-fluorouracil. Biochemical Pharmacology, 34, 3585–3589.

    Article  CAS  PubMed  Google Scholar 

  56. Houghton, J. A., & Houghton, P. J. (1983). Elucidation of pathways of 5-fluorouracil metabolism in xenografts of human colorectal adenocarcinoma. European Journal of Cancer and Clinical Oncology, 19, 807–815.

    Article  CAS  PubMed  Google Scholar 

  57. Malet-Martino, M., & Martino, R. (2002). Clinical studies of three oral prodrugs of 5-fluorouracil (capecitabine, UFT, S-1): a review. The Oncologist, 7, 288–323.

    Article  CAS  PubMed  Google Scholar 

  58. Kosuri, K., Wu, X., Wang, L., Villalona-Calero, M., & Otterson, G. (2010). An epigenetic mechanism for capecitabine resistance in mesothelioma. Biochemical and Biophysical Research Communications, 391, 1465–1470.

    Article  CAS  PubMed  Google Scholar 

  59. Bélanger, A.-S., Tojcic, J., Harvey, M., & Guillemette, C. (2010). Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells. BMC Molecular Biology, 11, 1–11.

    Article  Google Scholar 

  60. Toffoli, G., Cecchin, E., Gasparini, G., D’Andrea, M., Azzarello, G., Basso, U., Mini, E., Pessa, S., De Mattia, E., & Lo Re, G. (2010). Genotype-driven phase I study of irinotecan administered in combination with fluorouracil/leucovorin in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 28, 866–871.

    Article  CAS  PubMed  Google Scholar 

  61. Ward, R. A., Fawell, S., Floc’h, N., Flemington, V., McKerrecher, D., & Smith, P. D. (2020). Challenges and opportunities in cancer drug resistance. Chemical Reviews, 121, 3297–3351.

    Article  PubMed  Google Scholar 

  62. Joyce, H., McCann, A., Clynes, M., & Larkin, A. (2015). Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opinion on Drug Metabolism & Toxicology, 11, 795–809.

    Article  CAS  Google Scholar 

  63. Wood, K. C. (2015). Mapping the pathways of resistance to targeted therapies. Cancer Research, 75, 4247–4251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., & Wyczalkowski, M. A. (2013). Mutational landscape and significance across 12 major cancer types. Nature, 502, 333–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., Wong, K.-K., & Elledge, S. J. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137, 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, T., Brazhnik, P., & Tyson, J. J. (2009). Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophysical Journal, 97, 415–434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: Molecular interaction maps and networks. Oncogene, 23, 2934–2949.

    Article  CAS  PubMed  Google Scholar 

  68. Zhivotovsky, B., & Orrenius, S. (2003). Defects in the apoptotic machinery of cancer cells: Role in drug resistance. In: Proceedings of the Seminars in cancer biology, pp. 125–134.

  69. Indran, I. R., Tufo, G., Pervaiz, S., & Brenner, C. (2011). Recent advances in apoptosis, mitochondria and drug resistance in cancer cells. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807, 735–745.

    Article  CAS  PubMed  Google Scholar 

  70. Liang, X., Zhang, H., Wang, Z., Zhang, X., Dai, Z., Zhang, J., Luo, P., Zhang, L., Hu, J., Liu, Z., et al. (2022). JMJD8 Is an M2 macrophage biomarker, and it associates with DNA damage repair to facilitate stemness maintenance, chemoresistance, and immunosuppression in pan-cancer. Frontiers in immunology, 13, 875786. https://doi.org/10.3389/fimmu.2022.875786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou, W., Xu, Y., Zhang, J., Zhang, P., Yao, Z., Yan, Z., Wang, H., Chu, J., Yao, S., Zhao, S., et al. (2022). MiRNA-363-3p/DUSP10/JNK axis mediates chemoresistance by enhancing DNA damage repair in diffuse large B-cell lymphoma. Leukemia, 36, 1861–1869. https://doi.org/10.1038/s41375-022-01565-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Su, Y., Wu, C., Chang, Y., Li, L., Chen, Y., Jia, X., Wang, X., Lv, Y., Yu, B., & Yuan, J. (2022). USP17L2-SIRT7 axis regulates DNA damage repair and chemoresistance in breast cancer cells. Breast Cancer Research and Treatment, 196, 31–44. https://doi.org/10.1007/s10549-022-06711-3

    Article  CAS  PubMed  Google Scholar 

  73. Tang, C., Qiu, S., Mou, W., Xu, J., & Wang, P. (2022). Excessive activation of HOXB13/PIMREG axis promotes hepatocellular carcinoma progression and drug resistance. Biochemical and Biophysical Research Communications, 623, 81–88. https://doi.org/10.1016/j.bbrc.2022.07.066

    Article  CAS  PubMed  Google Scholar 

  74. Nicholson, H. A., Sawers, L., Clarke, R. G., Hiom, K. J., Ferguson, M. J., & Smith, G. (2022). Fibroblast growth factor signalling influences homologous recombination-mediated DNA damage repair to promote drug resistance in ovarian cancer. British Journal of Cancer, 127, 1340–1351. https://doi.org/10.1038/s41416-022-01899-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang, C., Chen, L., Sun, L., Jin, H., Ren, K., Liu, S., Qian, Y., Li, S., Li, F., Zhu, C., et al. (2023). BMAL1 collaborates with CLOCK to directly promote DNA double-strand break repair and tumor chemoresistance. Oncogene, 42, 967–979. https://doi.org/10.1038/s41388-023-02603-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jin, J., Ma, M., Shi, S., Wang, J., Xiao, P., Yu, H. F., Zhang, C., Guo, Q., Yu, Z., Lou, Z., et al. (2022). Copper enhances genotoxic drug resistance via ATOX1 activated DNA damage repair. Cancer Letters, 536, 215651. https://doi.org/10.1016/j.canlet.2022.215651

    Article  CAS  PubMed  Google Scholar 

  77. Yang, L., Shi, P., Zhao, G., Xu, J., Peng, W., Zhang, J., Zhang, G., Wang, X., Dong, Z., Chen, F., et al. (2020). Targeting cancer stem cell pathways for cancer therapy. Signal Transduction and Targeted Therapy, 5, 8. https://doi.org/10.1038/s41392-020-0110-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chen, W., Dong, J., Haiech, J., Kilhoffer, M. C., & Zeniou, M. (2016). Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells International, 2016, 1740936. https://doi.org/10.1155/2016/1740936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., & Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  80. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 3, 730–737. https://doi.org/10.1038/nm0797-730

    Article  CAS  PubMed  Google Scholar 

  81. Shimokawa, M., Ohta, Y., Nishikori, S., Matano, M., Takano, A., Fujii, M., Date, S., Sugimoto, S., Kanai, T., & Sato, T. (2017). Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature, 545, 187–192. https://doi.org/10.1038/nature22081

    Article  CAS  PubMed  Google Scholar 

  82. Shibata, M., Hoque, M. O. (2019). Targeting cancer stem cells: A strategy for effective eradication of cancer. Cancers, 11. https://doi.org/10.3390/cancers11050732

  83. Visvader, J. E., & Lindeman, G. J. (2012). Cancer stem cells: Current status and evolving complexities. Cell Stem Cell, 10, 717–728. https://doi.org/10.1016/j.stem.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  84. Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: The promise and the potential. Seminars in Oncology, 42(Suppl 1), S3-17. https://doi.org/10.1053/j.seminoncol.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  85. Chen, P. M., Wong, C. N., Wong, C. N., Chu, P. Y. (2023). Actin-like protein 6A expression correlates with cancer stem cell-like features and poor prognosis in ovarian cancer. International Journal of Molecular Sciences, 24. https://doi.org/10.3390/ijms24032016

  86. Sun, K., Shen, H., He, S., & Liu, Y. (2022). MASM inhibits cancer stem cell-like characteristics of EpCAM(+) cells via AKT/GSK3β/β-catenin signaling. American Journal of Translational Research, 14, 8380–8389.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chen, Y., Yang, Z., He, X., Zhu, W., Wang, Y., Li, J., Han, Z., Wen, J., Liu, W., Yang, Y., et al. (2023). Proanthocyanidins inhibited colorectal cancer stem cell characteristics through Wnt/β-catenin signaling. Environmental Toxicology. https://doi.org/10.1002/tox.23924

    Article  PubMed  Google Scholar 

  88. Gonzalez-Callejo, P., Guo, Z., Ziglari, T., Claudio, N. M., Nguyen, K. H., Oshimori, N., Seras-Franzoso, J., & Pucci, F. (2023). Cancer stem cell-derived extracellular vesicles preferentially target MHC-II-macrophages and PD1+ T cells in the tumor microenvironment. PLoS ONE, 18, e0279400. https://doi.org/10.1371/journal.pone.0279400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liao, W., Zhang, L., Chen, X., Xiang, J., Zheng, Q., Chen, N., Zhao, M., Zhang, G., Xiao, X., Zhou, G., et al. (2023). Targeting cancer stem cells and signalling pathways through phytochemicals: A promising approach against colorectal cancer. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 108, 154524. https://doi.org/10.1016/j.phymed.2022.154524

    Article  CAS  PubMed  Google Scholar 

  90. Ashrafizadeh, M., Zhang, W., Zou, R., Sethi, G., Klionsky, D. J., & Zhang, X. (2023). A bioinformatics analysis, pre-clinical and clinical conception of autophagy in pancreatic cancer: Complexity and simplicity in crosstalk. Pharmacological Research, 194, 106822. https://doi.org/10.1016/j.phrs.2023.106822

    Article  CAS  PubMed  Google Scholar 

  91. Qin, Y., Ashrafizadeh, M., Mongiardini, V., Grimaldi, B., Crea, F., Rietdorf, K., Győrffy, B., Klionsky, D. J., Ren, J., Zhang, W., et al. (2023). Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Letters, 570, 216307. https://doi.org/10.1016/j.canlet.2023.216307

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, S., Liu, X., Abdulmomen Ali Mohammed, S., Li, H., Cai, W., Guan, W., Liu, D., Wei, Y., Rong, D., Fang, Y., et al. (2022). Adaptor SH3BGRL drives autophagy-mediated chemoresistance through promoting PIK3C3 translation and ATG12 stability in breast cancers. Autophagy, 18, 1822–1840. https://doi.org/10.1080/15548627.2021.2002108

    Article  CAS  PubMed  Google Scholar 

  93. Luo, M., Deng, X., Chen, Z., & Hu, Y. (2023). Circular RNA circPOFUT1 enhances malignant phenotypes and autophagy-associated chemoresistance via sequestrating miR-488-3p to activate the PLAG1-ATG12 axis in gastric cancer. Cell Death & Disease, 14, 10. https://doi.org/10.1038/s41419-022-05506-0

    Article  CAS  Google Scholar 

  94. Zhang, S. R., Li, J., Chen, J. X., Chen, G., Chen, J. Y., Fu, H. W., & Zhou, B. (2022). SMC4 enhances the chemoresistance of hepatoma cells by promoting autophagy. Annals of Translational Medicine, 10, 1308. https://doi.org/10.21037/atm-22-3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sun, Y., Shen, W., Hu, S., Lyu, Q., Wang, Q., Wei, T., Zhu, W., & Zhang, J. (2023). METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. Journal of Experimental & Clinical Cancer Research : CR, 42, 65. https://doi.org/10.1186/s13046-023-02638-9

    Article  CAS  PubMed Central  Google Scholar 

  96. Shen, Z., Zhou, L., Zhang, C., & Xu, J. (2020). Reduction of circular RNA Foxo3 promotes prostate cancer progression and chemoresistance to docetaxel. Cancer Letters, 468, 88–101. https://doi.org/10.1016/j.canlet.2019.10.006

    Article  CAS  PubMed  Google Scholar 

  97. Zhou, Q., Chen, X., He, H., Peng, S., Zhang, Y., Zhang, J., Cheng, L., Liu, S., Huang, M., Xie, R., et al. (2021). WD repeat domain 5 promotes chemoresistance and programmed death-ligand 1 expression in prostate cancer. Theranostics, 11, 4809–4824. https://doi.org/10.7150/thno.55814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bai, L., Li, X., Yang, Y., Zhao, R., White, E. Z., Danaher, A., Bowen, N. J., Hinton, C. V., Cook, N., Li, D., et al. (2023). Bromocriptine monotherapy overcomes prostate cancer chemoresistance in preclinical models. Translational Oncology, 34, 101707. https://doi.org/10.1016/j.tranon.2023.101707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xie, C., Wang, Z., Ba, Y., Aguilar, J., Kyan, A., Zhong, L., & Hao, J. (2023). BMP signaling inhibition overcomes chemoresistance of prostate cancer. American Journal of Cancer Research, 13, 4073–4086.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ma, B., Shao, H., Jiang, X., Wang, Z., Wu, C. C., Whaley, D., & Wells, A. (2021). Akt isoforms differentially provide for chemoresistance in prostate cancer. Cancer Biology & Medicine, 19, 635–650. https://doi.org/10.20892/j.issn.2095-3941.2020.0747

    Article  CAS  Google Scholar 

  101. Orellana-Serradell, O., Herrera, D., Castellón, E. A., & Contreras, H. R. (2019). The transcription factor ZEB1 promotes chemoresistance in prostate cancer cell lines. Asian Journal of Andrology, 21, 460–467. https://doi.org/10.4103/aja.aja_1_19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang, W., Wang, L., Mizokami, A., Shi, J., Zou, C., Dai, J., Keller, E. T., Lu, Y., & Zhang, J. (2017). Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. Chinese Journal of Cancer, 36, 35. https://doi.org/10.1186/s40880-017-0203-x

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li, X., Gera, L., Zhang, S., Chen, Y., Lou, L., Wilson, L. M., Xie, Z. R., Sautto, G., Liu, D., Danaher, A., et al. (2021). Pharmacological inhibition of noncanonical EED-EZH2 signaling overcomes chemoresistance in prostate cancer. Theranostics, 11, 6873–6890. https://doi.org/10.7150/thno.49235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Luo, S., Shao, L., Chen, Z., Hu, D., Jiang, L., & Tang, W. (2020). NPRL2 promotes docetaxel chemoresistance in castration resistant prostate cancer cells by regulating autophagy through the mTOR pathway. Experimental Cell Research, 390, 111981. https://doi.org/10.1016/j.yexcr.2020.111981

    Article  CAS  PubMed  Google Scholar 

  105. Liu, C., Li, Z., Bi, L., Li, K., Zhou, B., Xu, C., Huang, J., & Xu, K. (2014). NOTCH1 signaling promotes chemoresistance via regulating ABCC1 expression in prostate cancer stem cells. Molecular and Cellular Biochemistry, 393, 265–270. https://doi.org/10.1007/s11010-014-2069-4

    Article  CAS  PubMed  Google Scholar 

  106. Biernacka, K. M., Uzoh, C. C., Zeng, L., Persad, R. A., Bahl, A., Gillatt, D., Perks, C. M., & Holly, J. M. (2013). Hyperglycaemia-induced chemoresistance of prostate cancer cells due to IGFBP2. Endocrine-Related Cancer, 20, 741–751. https://doi.org/10.1530/erc-13-0077

    Article  CAS  PubMed  Google Scholar 

  107. Kato, T., Fujita, Y., Nakane, K., Kojima, T., Nozawa, Y., Deguchi, T., & Ito, M. (2012). ETS1 promotes chemoresistance and invasion of paclitaxel-resistant, hormone-refractory PC3 prostate cancer cells by up-regulating MDR1 and MMP9 expression. Biochemical and Biophysical Research Communications, 417, 966–971. https://doi.org/10.1016/j.bbrc.2011.12.047

    Article  CAS  PubMed  Google Scholar 

  108. Stafford, M. Y. C., McKenna, D. J. (2023). MiR-182 is upregulated in prostate cancer and contributes to tumor progression by targeting MITF. International Journal of Molecular Sciences, 24. https://doi.org/10.3390/ijms24031824

  109. Bozgeyik, E., Arslan, A., Temiz, E., Batar, B., Koyuncu, I., & Tozkir, H. (2022). miR-320a promotes p53-dependent apoptosis of prostate cancer cells by negatively regulating TP73-AS1 invitro. Biochemical and Biophysical Research Communications, 619, 130–136. https://doi.org/10.1016/j.bbrc.2022.06.034

    Article  CAS  PubMed  Google Scholar 

  110. Wang, C., Li, W., Hu, Q., Feng, N., Liu, C., Shi, N., Chen, S., Chen, M., Guan, H., You, Z., et al. (2022). Transgenic construction and functional miRNA analysis identify the role of miR-7 in prostate cancer suppression. Oncogene, 41, 4645–4657. https://doi.org/10.1038/s41388-022-02461-0

    Article  CAS  PubMed  Google Scholar 

  111. Wang, Y., Lieberman, R., Pan, J., Zhang, Q., Du, M., Zhang, P., Nevalainen, M., Kohli, M., Shenoy, N. K., Meng, H., et al. (2016). miR-375 induces docetaxel resistance in prostate cancer by targeting SEC23A and YAP1. Molecular Cancer, 15, 70. https://doi.org/10.1186/s12943-016-0556-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fujita, Y., Kojima, K., Hamada, N., Ohhashi, R., Akao, Y., Nozawa, Y., Deguchi, T., & Ito, M. (2008). Effects of miR-34a on cell growth and chemoresistance in prostate cancer PC3 cells. Biochemical and Biophysical Research Communications, 377, 114–119. https://doi.org/10.1016/j.bbrc.2008.09.086

    Article  CAS  PubMed  Google Scholar 

  113. Gujrati, H., Ha, S., Waseem, M., Wang, B. D. (2022). Downregulation of miR-99b-5p and upregulation of nuclear mTOR cooperatively promotes the tumor aggressiveness and drug resistance in African American prostate cancer. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms23179643

  114. Paskeh, M. D. A., Entezari, M., Mirzaei, S., Zabolian, A., Saleki, H., Naghdi, M. J., Sabet, S., Khoshbakht, M. A., Hashemi, M., Hushmandi, K., et al. (2022). Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. Journal of Hematology & Oncology, 15, 83. https://doi.org/10.1186/s13045-022-01305-4

    Article  CAS  Google Scholar 

  115. Cao, Z., Xu, L., & Zhao, S. (2019). Exosome-derived miR-27a produced by PSC-27 cells contributes to prostate cancer chemoresistance through p53. Biochemical and Biophysical Research Communications, 515, 345–351. https://doi.org/10.1016/j.bbrc.2019.05.120

    Article  CAS  PubMed  Google Scholar 

  116. Shi, G. H., Ye, D. W., Yao, X. D., Zhang, S. L., Dai, B., Zhang, H. L., Shen, Y. J., Zhu, Y., Zhu, Y. P., Xiao, W. J., et al. (2010). Involvement of microRNA-21 in mediating chemo-resistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacologica Sinica, 31, 867–873. https://doi.org/10.1038/aps.2010.48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, J., Qin, P., Cao, C., Dai, G., Xu, L., & Yang, D. (2021). Use of miR-145 and testicular nuclear receptor 4 inhibition to reduce chemoresistance to docetaxel in prostate cancer. Oncology Reports, 45, 963–974. https://doi.org/10.3892/or.2021.7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou, P., Ma, L., Zhou, J., Jiang, M., Rao, E., Zhao, Y., & Guo, F. (2016). miR-17-92 plays an oncogenic role and conveys chemo-resistance to cisplatin in human prostate cancer cells. International Journal of Oncology, 48, 1737–1748. https://doi.org/10.3892/ijo.2016.3392

    Article  CAS  PubMed  Google Scholar 

  119. Zhong, J., Huang, R., Su, Z., Zhang, M., Xu, M., Gong, J., Chen, N., Zeng, H., Chen, X., & Zhou, Q. (2017). Downregulation of miR-199a-5p promotes prostate adeno-carcinoma progression through loss of its inhibition of HIF-1α. Oncotarget, 8, 83523–83538. https://doi.org/10.18632/oncotarget.18315

    Article  PubMed  PubMed Central  Google Scholar 

  120. Tseng, J. C., Huang, S. H., Lin, C. Y., Wang, B. J., Huang, S. F., Shen, Y. Y., & Chuu, C. P. (2020). ROR2 suppresses metastasis of prostate cancer via regulation of miR-199a-5p-PIAS3-AKT2 signaling axis. Cell Death & Disease, 11, 376. https://doi.org/10.1038/s41419-020-2587-9

    Article  CAS  Google Scholar 

  121. Chen, L., Cao, H., & Feng, Y. (2018). MiR-199a suppresses prostate cancer paclitaxel resistance by targeting YES1. World Journal of Urology, 36, 357–365. https://doi.org/10.1007/s00345-017-2143-0

    Article  CAS  PubMed  Google Scholar 

  122. Xu, X., Wang, Y., Deng, H., Liu, C., Wu, J., & Lai, M. (2018). HMGA2 enhances 5-fluorouracil chemoresistance in colorectal cancer via the Dvl2/Wnt pathway. Oncotarget, 9, 9963–9974. https://doi.org/10.18632/oncotarget.24133

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wu, C., Miao, C., Tang, Q., Zhou, X., Xi, P., Chang, P., Hua, L., & Ni, H. (2020). MiR-129-5p promotes docetaxel resistance in prostate cancer by down-regulating CAMK2N1 expression. Journal of Cellular and Molecular Medicine, 24, 2098–2108. https://doi.org/10.1111/jcmm.14050

    Article  CAS  PubMed  Google Scholar 

  124. Yang, Z., Chen, J. S., Wen, J. K., Gao, H. T., Zheng, B., Qu, C. B., Liu, K. L., Zhang, M. L., Gu, J. F., Li, J. D., et al. (2017). Silencing of miR-193a-5p increases the chemosensitivity of prostate cancer cells to docetaxel. Journal of Experimental & Clinical Cancer Research : CR, 36, 178. https://doi.org/10.1186/s13046-017-0649-3

    Article  CAS  PubMed Central  Google Scholar 

  125. Mirzaei, S., Paskeh, M. D. A., Okina, E., Gholami, M. H., Hushmandi, K., Hashemi, M., Kalu, A., Zarrabi, A., Nabavi, N., Rabiee, N., et al. (2022). Molecular landscape of LncRNAs in prostate cancer: A focus on pathways and therapeutic targets for intervention. Journal of Experimental & Clinical Cancer Research : CR, 41, 214. https://doi.org/10.1186/s13046-022-02406-1

    Article  CAS  PubMed Central  Google Scholar 

  126. Liu, B., Li, X., Wang, D., Yu, Y., Lu, D., Chen, L., Lv, F., Li, Y., Cheng, L., Song, Y., et al. (2022). CEMIP promotes extracellular matrix-detached prostate cancer cell survival by inhibiting ferroptosis. Cancer Science, 113, 2056–2070. https://doi.org/10.1111/cas.15356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Cheng, L., He, Q., Liu, B., Chen, L., Lv, F., Li, X., Li, Y., Liu, C., Song, Y., & Xing, Y. (2023). SGK2 promotes prostate cancer metastasis by inhibiting ferroptosis via upregulating GPX4. Cell Death & Disease, 14, 74. https://doi.org/10.1038/s41419-023-05614-5

    Article  CAS  Google Scholar 

  128. Jiang, X., Guo, S., Xu, M., Ma, B., Liu, R., Xu, Y., & Zhang, Y. (2022). TFAP2C-mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Frontiers in Oncology, 12, 862015. https://doi.org/10.3389/fonc.2022.862015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Jiang, H., Xiong, W., Chen, L., Lv, Z., Yang, C., & Li, Y. (2019). Knockdown of the long noncoding RNA HOTTIP inhibits cell proliferation and enhances cell sensitivity to cisplatin by suppressing the Wnt/β-catenin pathway in prostate cancer. Journal of Cellular Biochemistry, 120, 8965–8974. https://doi.org/10.1002/jcb.27851

    Article  CAS  PubMed  Google Scholar 

  130. Cao, C., Sun, G., & Liu, C. (2020). Long non-coding RNA SNHG6 regulates the sensitivity of prostate cancer cells to paclitaxel by sponging miR-186. Cancer Cell International, 20, 381. https://doi.org/10.1186/s12935-020-01462-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Xing, Z., Li, S., Xing, J., Yu, G., Wang, G., & Liu, Z. (2022). Silencing of LINC01963 enhances the chemosensitivity of prostate cancer cells to docetaxel by targeting the miR-216b-5p/TrkB axis. Laboratory Investigation; A Journal of Technical Methods and Pathology, 102, 602–612. https://doi.org/10.1038/s41374-022-00736-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gao, W., Lin, S., Cheng, C., Zhu, A., Hu, Y., Shi, Z., Zhang, X., & Hong, Z. (2019). Long non-coding RNA CASC2 regulates Sprouty2 via functioning as a competing endogenous RNA for miR-183 to modulate the sensitivity of prostate cancer cells to docetaxel. Archives of Biochemistry and Biophysics, 665, 69–78. https://doi.org/10.1016/j.abb.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  133. Li, X., Han, X., Wei, P., Yang, J., & Sun, J. (2020). Knockdown of lncRNA CCAT1 enhances sensitivity of paclitaxel in prostate cancer via regulating miR-24-3p and FSCN1. Cancer Biology & Therapy, 21, 452–462. https://doi.org/10.1080/15384047.2020.1727700

    Article  CAS  Google Scholar 

  134. Wang, C., Ding, T., Yang, D., Zhang, P., Hu, X., Qin, W., & Zheng, J. (2021). The lncRNA OGFRP1/miR-149-5p/IL-6 axis regulates prostate cancer chemoresistance. Pathology, Research and Practice, 224, 153535. https://doi.org/10.1016/j.prp.2021.153535

    Article  CAS  PubMed  Google Scholar 

  135. Shi, T., Li, R., Duan, P., Guan, Y., Zhang, D., Ding, Z., & Ruan, X. (2022). TRPM2-AS promotes paclitaxel resistance in prostate cancer by regulating FOXK1 via sponging miR-497-5p. Drug Development Research, 83, 967–978. https://doi.org/10.1002/ddr.21924

    Article  CAS  PubMed  Google Scholar 

  136. Wang, Y. Y., & Chen, C. (2022). lncRNA-DANCR promotes Taxol resistance of prostate cancer cells through modulating the miR-33b-5p-LDHA axis. Disease Markers, 2022, 9516774. https://doi.org/10.1155/2022/9516774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gu, P., Chen, X., Xie, R., Han, J., Xie, W., Wang, B., Dong, W., Chen, C., Yang, M., Jiang, J., et al. (2017). lncRNA HOXD-AS1 regulates proliferation and chemo-resistance of castration-resistant prostate cancer via recruiting WDR5. Molecular therapy : The Journal of the American Society of Gene Therapy, 25, 1959–1973. https://doi.org/10.1016/j.ymthe.2017.04.016

    Article  CAS  PubMed  Google Scholar 

  138. Ding, X., Sun, J., & Zhang, X. (2022). Circ_0076305 facilitates prostate cancer development via sponging miR-411-5p and regulating PGK1. Andrologia, 54, e14406. https://doi.org/10.1111/and.14406

    Article  CAS  PubMed  Google Scholar 

  139. Zhang, G., Liu, Y., Yang, J., Wang, H., & Xing, Z. (2022). Inhibition of circ_0081234 reduces prostate cancer tumor growth and metastasis via the miR-1/MAP 3 K1 axis. The Journal of Gene Medicine, 24, e3376. https://doi.org/10.1002/jgm.3376

    Article  CAS  PubMed  Google Scholar 

  140. Cai, F., Li, J., Zhang, J., & Huang, S. (2022). Knockdown of Circ_CCNB2 sensitizes prostate cancer to radiation through repressing autophagy by the miR-30b-5p/KIF18A axis. Cancer Biotherapy & Radiopharmaceuticals, 37, 480–493. https://doi.org/10.1089/cbr.2019.3538

    Article  CAS  Google Scholar 

  141. Yu, T., Du, H., & Sun, C. (2023). Circ-ABCC4 contributes to prostate cancer progression and radioresistance by mediating miR-1253/SOX4 cascade. Anti-Cancer Drugs, 34, 155–165. https://doi.org/10.1097/cad.0000000000001361

    Article  CAS  PubMed  Google Scholar 

  142. Zhang, Y., Liu, F., Feng, Y., Xu, X., Wang, Y., Zhu, S., Dong, J., Zhao, S., Xu, B., & Feng, N. (2022). CircRNA circ_0006156 inhibits the metastasis of prostate cancer by blocking the ubiquitination of S100A9. Cancer Gene Therapy, 29, 1731–1741. https://doi.org/10.1038/s41417-022-00492-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chen, L., Song, Y., Hou, T., Li, X., Cheng, L., Li, Y., & Xing, Y. (2022). Circ_0004087 interaction with SND1 promotes docetaxel resistance in prostate cancer by boosting the mitosis error correction mechanism. Journal of Experimental & Clinical Cancer Research : CR, 41, 194. https://doi.org/10.1186/s13046-022-02404-3

    Article  CAS  PubMed Central  Google Scholar 

  144. Gao, Y., Liu, J., Huan, J., & Che, F. (2020). Downregulation of circular RNA hsa_circ_0000735 boosts prostate cancer sensitivity to docetaxel via sponging miR-7. Cancer Cell International, 20, 334. https://doi.org/10.1186/s12935-020-01421-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gu, H., & Duan, Z. (2022). Silencing of circDPP4 suppresses cell progression of human prostate cancer and enhances docetaxel cytotoxicity through regulating the miR-564/ZIC2 axis. The Journal Of Gene Medicine, 24, e3403. https://doi.org/10.1002/jgm.3403

    Article  CAS  PubMed  Google Scholar 

  146. Zheng, P., Gao, H., Xie, X., & Lu, P. (2022). Plasma exosomal hsa_circ_0015286 as a potential diagnostic and prognostic biomarker for gastric cancer. Pathology Oncology Research : POR, 28, 1610446. https://doi.org/10.3389/pore.2022.1610446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zheng, Y., Li, P., Ma, J., Yang, C., Dai, S., & Zhao, C. (2022). Cancer-derived exosomal circ_0038138 enhances glycolysis, growth, and metastasis of gastric adenocarcinoma via the miR-198/EZH2 axis. Translational Oncology, 25, 101479. https://doi.org/10.1016/j.tranon.2022.101479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Tan, X., Song, X., Fan, B., Li, M., Zhang, A., & Pei, L. (2022). Exosomal circRNA Scm-like with four malignant brain tumor domains 2 (circ-SFMBT2) enhances the docetaxel resistance of prostate cancer via the microRNA-136-5p/tribbles homolog 1 pathway. Anti-Cancer Drugs, 33, 871–882. https://doi.org/10.1097/cad.0000000000001365

    Article  CAS  PubMed  Google Scholar 

  149. Chen, H., Li, H., & Chen, Q. (2016). INPP4B reverses docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer. Biochemical and Biophysical Research Communications, 477, 467–472. https://doi.org/10.1016/j.bbrc.2016.06.073

    Article  CAS  PubMed  Google Scholar 

  150. Ni, J., Cozzi, P., Hao, J., Beretov, J., Chang, L., Duan, W., Shigdar, S., Delprado, W., Graham, P., Bucci, J., et al. (2013). Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. The International Journal of Biochemistry & Cell Biology, 45, 2736–2748. https://doi.org/10.1016/j.biocel.2013.09.008

    Article  CAS  Google Scholar 

  151. Sharma, P. K., Singh, R., Novakovic, K. R., Eaton, J. W., Grizzle, W. E., & Singh, S. (2010). CCR9 mediates PI3K/AKT-dependent antiapoptotic signals in prostate cancer cells and inhibition of CCR9-CCL25 interaction enhances the cytotoxic effects of etoposide. International Journal of Cancer, 127, 2020–2030. https://doi.org/10.1002/ijc.25219

    Article  CAS  PubMed  Google Scholar 

  152. Lee, J. T., Jr., Steelman, L. S., & McCubrey, J. A. (2004). Phosphatidylinositol 3′-kinase activation leads to multidrug resistance protein-1 expression and subsequent chemoresistance in advanced prostate cancer cells. Cancer research, 64, 8397–8404. https://doi.org/10.1158/0008-5472.Can-04-1612

    Article  CAS  PubMed  Google Scholar 

  153. Hour, T. C., Chung, S. D., Kang, W. Y., Lin, Y. C., Chuang, S. J., Huang, A. M., Wu, W. J., Huang, S. P., Huang, C. Y., & Pu, Y. S. (2015). EGFR mediates docetaxel resistance in human castration-resistant prostate cancer through the Akt-dependent expression of ABCB1 (MDR1). Archives of Toxicology, 89, 591–605. https://doi.org/10.1007/s00204-014-1275-x

    Article  CAS  PubMed  Google Scholar 

  154. Ni, J., Cozzi, P. J., Hao, J. L., Beretov, J., Chang, L., Duan, W., Shigdar, S., Delprado, W. J., Graham, P. H., Bucci, J., et al. (2014). CD44 variant 6 is associated with prostate cancer metastasis and chemo-/radioresistance. The Prostate, 74, 602–617. https://doi.org/10.1002/pros.22775

    Article  CAS  PubMed  Google Scholar 

  155. Zhou, W., Su, Y., Zhang, Y., Han, B., Liu, H., & Wang, X. (2020). Endothelial cells promote docetaxel resistance of prostate cancer cells by inducing ERG expression and activating Akt/mTOR signaling pathway. Frontiers in Oncology, 10, 584505. https://doi.org/10.3389/fonc.2020.584505

    Article  PubMed  PubMed Central  Google Scholar 

  156. Song, C., Zhang, J., Liu, X., Li, M., Wang, D., Kang, Z., Yu, J., Chen, J., Pan, H., Wang, H., et al. (2022). PTEN loss promotes Warburg effect and prostate cancer cell growth by inducing FBP1 degradation. Frontiers in Oncology, 12, 911466. https://doi.org/10.3389/fonc.2022.911466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ferraldeschi, R., Nava Rodrigues, D., Riisnaes, R., Miranda, S., Figueiredo, I., Rescigno, P., Ravi, P., Pezaro, C., Omlin, A., Lorente, D., et al. (2015). PTEN protein loss and clinical outcome from castration-resistant prostate cancer treated with abiraterone acetate. European urology, 67, 795–802. https://doi.org/10.1016/j.eururo.2014.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hong, Z., Wu, G., Xiang, Z. D., Xu, C. D., Huang, S. S., Li, C., Shi, L., & Wu, D. L. (2019). KDM5C is transcriptionally regulated by BRD4 and promotes castration-resistance prostate cancer cell proliferation by repressing PTEN. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 114, 108793. https://doi.org/10.1016/j.biopha.2019.108793

    Article  CAS  Google Scholar 

  159. Yuan, X. J., & Whang, Y. E. (2002). PTEN sensitizes prostate cancer cells to death receptor-mediated and drug-induced apoptosis through a FADD-dependent pathway. Oncogene, 21, 319–327. https://doi.org/10.1038/sj.onc.1205054

    Article  CAS  PubMed  Google Scholar 

  160. Huang, H., Cheville, J. C., Pan, Y., Roche, P. C., Schmidt, L. J., & Tindall, D. J. (2001). PTEN induces chemosensitivity in PTEN-mutated prostate cancer cells by suppression of Bcl-2 expression. The Journal of Biological Chemistry, 276, 38830–38836. https://doi.org/10.1074/jbc.M103632200

    Article  CAS  PubMed  Google Scholar 

  161. Zhao, W., Ning, L., Wang, L., Ouyang, T., Qi, L., Yang, R., & Wu, Y. (2021). miR-21 inhibition reverses doxorubicin-resistance and inhibits PC3 human prostate cancer cells proliferation. Andrologia, 53, e14016. https://doi.org/10.1111/and.14016

    Article  CAS  PubMed  Google Scholar 

  162. Sekino, Y., Han, X., Kawaguchi, T., Babasaki, T., Goto, K., Inoue, S., Hayashi, T., Teishima, J., Shiota, M., Yasui, W. et al. (2019). TUBB3 reverses resistance to docetaxel and cabazitaxel in prostate cancer. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ijms20163936

  163. Sekino, Y., Han, X., Babasaki, T., Miyamoto, S., Kobatake, K., Kitano, H., Ikeda, K., Goto, K., Inoue, S., Hayashi, T., et al. (2021). TUBB3 is associated with PTEN, neuroendocrine differentiation, and castration resistance in prostate cancer. Urologic Oncology, 39(368), e361-368.e369. https://doi.org/10.1016/j.urolonc.2021.03.001

    Article  CAS  Google Scholar 

  164. Thalappil, M. A., Butturini, E., Carcereri de Prati, A., Bettin, I., Antonini, L., Sapienza, F. U., Garzoli, S., Ragno, R., Mariotto, S. (2022). Pinus mugo essential oil impairs STAT3 activation through oxidative stress and induces apoptosis in prostate cancer cells. Molecules (Basel, Switzerland), 27. https://doi.org/10.3390/molecules27154834

  165. Zhang, K., Yin, W., Ma, L., Liu, Z., & Li, Q. (2023). HSPB8 facilitates prostate cancer progression via activating the JAK/STAT3 signaling pathway. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire, 101, 1–11. https://doi.org/10.1139/bcb-2022-0205

    Article  CAS  PubMed  Google Scholar 

  166. Li, X., He, S., Liang, W., Zhang, W., Chen, X., Li, Q., Yang, X., Liu, Y., Zhu, D., Li, L., et al. (2023). Marsdenia tenacissima injection induces the apoptosis of prostate cancer by regulating the AKT/GSK3β/STAT3 signaling axis. Chinese Journal of Natural Medicines, 21, 113–126. https://doi.org/10.1016/s1875-5364(23)60389-9

    Article  CAS  PubMed  Google Scholar 

  167. Ji, Y., Liu, B., Chen, L., Li, A., Shen, K., Su, R., Zhang, W., Zhu, Y., Wang, Q., & Xue, W. (2023). Repurposing ketotifen as a therapeutic strategy for neuroendocrine prostate cancer by targeting the IL-6/STAT3 pathway. Cellular Oncology (Dordrecht). https://doi.org/10.1007/s13402-023-00822-9

    Article  PubMed  Google Scholar 

  168. Zhong, W., Wu, K., Long, Z., Zhou, X., Zhong, C., Wang, S., Lai, H., Guo, Y., Lv, D., Lu, J., et al. (2022). Gut dysbiosis promotes prostate cancer progression and docetaxel resistance via activating NF-κB-IL6-STAT3 axis. Microbiome, 10, 94. https://doi.org/10.1186/s40168-022-01289-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Cheteh, E. H., Sarne, V., Ceder, S., Bianchi, J., Augsten, M., Rundqvist, H., Egevad, L., Östman, A., & Wiman, K. G. (2020). Interleukin-6 derived from cancer-associated fibroblasts attenuates the p53 response to doxorubicin in prostate cancer cells. Cell Death Discovery, 6, 42. https://doi.org/10.1038/s41420-020-0272-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Liu, C., Zhu, Y., Lou, W., Cui, Y., Evans, C. P., & Gao, A. C. (2014). Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. The Prostate, 74, 201–209. https://doi.org/10.1002/pros.22741

    Article  CAS  PubMed  Google Scholar 

  171. Fu, Z., Zhao, P. Y., Yang, X. P., Li, H., Hu, S. D., Xu, Y. X., & Du, X. H. (2023). Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Frontiers in Pharmacology, 14, 1094020. https://doi.org/10.3389/fphar.2023.1094020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Thomas, S., & Shah, G. (2005). Calcitonin induces apoptosis resistance in prostate cancer cell lines against cytotoxic drugs via the Akt/survivin pathway. Cancer Biology & Therapy, 4, 1226–1233. https://doi.org/10.4161/cbt.4.11.2093

    Article  CAS  Google Scholar 

  173. Wu, G., Wang, J., Chen, G., & Zhao, X. (2017). microRNA-204 modulates chemosensitivity and apoptosis of prostate cancer cells by targeting zinc-finger E-box-binding homeobox 1 (ZEB1). American Journal of Translational Research, 9, 3599–3610.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Chen, L., Cai, J., Huang, Y., Tan, X., Guo, Q., Lin, X., Zhu, C., Zeng, X., Liu, H., & Wu, X. (2020). Identification of cofilin-1 as a novel mediator for the metastatic potentials and chemoresistance of the prostate cancer cells. European Journal of Pharmacology, 880, 173100. https://doi.org/10.1016/j.ejphar.2020.173100

    Article  CAS  PubMed  Google Scholar 

  175. Sun, M. Y., Xu, B., Wu, Q. X., Chen, W. L., Cai, S., Zhang, H., & Tang, Q. F. (2021). Cisplatin-resistant gastric cancer cells promote the chemoresistance of cisplatin-sensitive cells via the exosomal RPS3-mediated PI3K-Akt-Cofilin-1 signaling axis. Frontiers in Cell and Developmental Biology, 9, 618899. https://doi.org/10.3389/fcell.2021.618899

    Article  PubMed  PubMed Central  Google Scholar 

  176. Hsu, W. C., Ramesh, S., Shibu, M. A., Chen, M. C., Wang, T. F., Day, C. H., Chen, R. J., Padma, V. V., Li, C. C., Tseng, Y. C., et al. (2021). Platycodin D reverses histone deacetylase inhibitor resistance in hepatocellular carcinoma cells by repressing ERK1/2-mediated cofilin-1 phosphorylation. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 82, 153442. https://doi.org/10.1016/j.phymed.2020.153442

    Article  CAS  PubMed  Google Scholar 

  177. Xiao, G., Wang, X., & Yu, Y. (2017). CXCR4/Let-7a axis regulates metastasis and chemoresistance of pancreatic cancer cells through targeting HMGA2. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology, 43, 840–851. https://doi.org/10.1159/000481610

    Article  CAS  PubMed  Google Scholar 

  178. Dong, J., Wang, R., Ren, G., Li, X., Wang, J., Sun, Y., Liang, J., Nie, Y., Wu, K., Feng, B., et al. (2017). HMGA2-FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 23, 3461–3473. https://doi.org/10.1158/1078-0432.Ccr-16-2180

    Article  CAS  PubMed  Google Scholar 

  179. Cai, J., Shen, G., Liu, S., & Meng, Q. (2016). Downregulation of HMGA2 inhibits cellular proliferation and invasion, improves cellular apoptosis in prostate cancer. Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37, 699–707. https://doi.org/10.1007/s13277-015-3853-9

    Article  CAS  PubMed  Google Scholar 

  180. Liu, Y., Xu, X., Lin, P., He, Y., Zhang, Y., Cao, B., Zhang, Z., Sethi, G., Liu, J., Zhou, X., et al. (2019). Inhibition of the deubiquitinase USP9x induces pre-B cell homeobox 1 (PBX1) degradation and thereby stimulates prostate cancer cell apoptosis. The Journal of Biological Chemistry, 294, 4572–4582. https://doi.org/10.1074/jbc.RA118.006057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ye, Q. F., Zhang, Y. C., Peng, X. Q., Long, Z., Ming, Y. Z., & He, L. Y. (2012). siRNA-mediated silencing of Notch-1 enhances docetaxel induced mitotic arrest and apoptosis in prostate cancer cells. Asian Pacific Journal of Cancer Prevention : APJCP, 13, 2485–2489. https://doi.org/10.7314/apjcp.2012.13.6.2485

    Article  PubMed  Google Scholar 

  182. Mancini, M. C. S., Morelli, A. P., Severino, M. B., Pavan, I. C. B., Zambalde, É. P., Góis, M. M., Silva, L., Quintero-Ruiz, N., Romeiro, C. F., Dos Santos, D. F. G., et al. (2022). Knockout of NRF2 triggers prostate cancer cells death through ROS modulation and sensitizes to cisplatin. Journal of Cellular Biochemistry, 123, 2079–2092. https://doi.org/10.1002/jcb.30333

    Article  CAS  PubMed  Google Scholar 

  183. Zhang, Y., Wang, Y., Yuan, J., Qin, W., Liu, F., Wang, F., Zhang, G., & Yang, X. (2012). Toll-like receptor 4 ligation confers chemoresistance to docetaxel on PC-3 human prostate cancer cells. Cell Biology and Toxicology, 28, 269–277. https://doi.org/10.1007/s10565-012-9221-2

    Article  CAS  PubMed  Google Scholar 

  184. Qian, S., Zhang, S., Wu, Y., Ding, Y., & Li, X. (2020). Protein disulfide isomerase 4 drives docetaxel resistance in prostate cancer. Chemotherapy, 65, 125–133. https://doi.org/10.1159/000511505

    Article  CAS  PubMed  Google Scholar 

  185. Liu, J., Chen, Z., Guo, J., Wang, L., Liu, X. (2019). Ambra1 induces autophagy and desensitizes human prostate cancer cells to cisplatin. Bioscience Reports, 39. https://doi.org/10.1042/bsr20170770

  186. Tang, Q., Fang, J., Lai, W., Hu, Y., Liu, C., Hu, X., Song, C., Cheng, T., Liu, R., & Huang, X. (2022). Hippo pathway monomerizes STAT3 to regulate prostate cancer growth. Cancer Science, 113, 2753–2762. https://doi.org/10.1111/cas.15463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Sheng, W., Ding, J., Liu, L., Wang, N., Lu, B., You, X., He, Q., & Zhou, Q. (2022). Curcumol inhibits the development of prostate cancer by miR-125a/STAT3 axis. Evidence-based Complementary and Alternative Medicine : ECAM, 2022, 9317402. https://doi.org/10.1155/2022/9317402

    Article  PubMed  Google Scholar 

  188. Yu, C., Fan, Y., Zhang, Y., Liu, L., & Guo, G. (2022). LINC00893 inhibits the progression of prostate cancer through miR-3173-5p/SOCS3/JAK2/STAT3 pathway. Cancer Cell International, 22, 228. https://doi.org/10.1186/s12935-022-02637-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Hu, F., Zhao, Y., Yu, Y., Fang, J. M., Cui, R., Liu, Z. Q., Guo, X. L., & Xu, Q. (2018). Docetaxel-mediated autophagy promotes chemoresistance in castration-resistant prostate cancer cells by inhibiting STAT3. Cancer Letters, 416, 24–30. https://doi.org/10.1016/j.canlet.2017.12.013

    Article  CAS  PubMed  Google Scholar 

  190. Chang, P. C., Wang, T. Y., Chang, Y. T., Chu, C. Y., Lee, C. L., Hsu, H. W., Zhou, T. A., Wu, Z., Kim, R. H., Desai, S. J., et al. (2014). Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells. PLoS ONE, 9, e88556. https://doi.org/10.1371/journal.pone.0088556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Liao, H., Xiao, Y., Hu, Y., Xiao, Y., Yin, Z., Liu, L., Kang, X., & Chen, Y. (2016). Methylation-induced silencing of miR-34a enhances chemoresistance by directly upregulating ATG4B-induced autophagy through AMPK/mTOR pathway in prostate cancer. Oncology Reports, 35, 64–72. https://doi.org/10.3892/or.2015.4331

    Article  CAS  PubMed  Google Scholar 

  192. Zeng, J., Liu, W., Fan, Y. Z., He, D. L., & Li, L. (2018). PrLZ increases prostate cancer docetaxel resistance by inhibiting LKB1/AMPK-mediated autophagy. Theranostics, 8, 109–123. https://doi.org/10.7150/thno.20356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Xie, J., Chen, X., Wang, W., Guan, Z., Hou, J., & Lin, J. (2022). Long non-coding RNA PCDRlnc1 confers docetaxel resistance in prostate cancer by promoting autophagy. Journal of Cancer, 13, 2138–2149. https://doi.org/10.7150/jca.65329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Lamprou, I., Tsolou, A., Kakouratos, C., Mitrakas, A. G., Xanthopoulou, E. T., Kassela, K., Karakasiliotis, I., Zois, C. E., Giatromanolaki, A., & Koukourakis, M. I. (2021). Suppressed PLIN3 frequently occurs in prostate cancer, promoting docetaxel resistance via intensified autophagy, an event reversed by chloroquine. Medical Oncology (Northwood, London, England), 38, 116. https://doi.org/10.1007/s12032-021-01566-y

    Article  CAS  PubMed  Google Scholar 

  195. Li, M., Chen, X., Wang, X., Wei, X., Wang, D., Liu, X., Xu, L., Batu, W., Li, Y., Guo, B., et al. (2021). RSL3 enhances the antitumor effect of cisplatin on prostate cancer cells via causing glycolysis dysfunction. Biochemical Pharmacology, 192, 114741. https://doi.org/10.1016/j.bcp.2021.114741

    Article  CAS  PubMed  Google Scholar 

  196. Martínez-Martínez, D., Soto, A., Gil-Araujo, B., Gallego, B., Chiloeches, A., & Lasa, M. (2019). Resveratrol promotes apoptosis through the induction of dual specificity phosphatase 1 and sensitizes prostate cancer cells to cisplatin. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association, 124, 273–279. https://doi.org/10.1016/j.fct.2018.12.014

    Article  CAS  PubMed  Google Scholar 

  197. Zhu, Q., Li, H., Liu, Y., & Jiang, L. (2017). Knockdown of CFTR enhances sensitivity of prostate cancer cells to cisplatin via inhibition of autophagy. Neoplasma, 64, 709–717. https://doi.org/10.4149/neo_2017_508

    Article  CAS  PubMed  Google Scholar 

  198. Kim, K. Y., Yun, U. J., Yeom, S. H., Kim, S. C., Lee, H. J., Ahn, S.C., Park, K. I., Kim, Y. W. (2021). Inhibition of autophagy promotes hemistepsin A-induced apoptosis via reactive oxygen species-mediated AMPK-dependent signaling in human prostate cancer cells. Biomolecules, 11. https://doi.org/10.3390/biom11121806

  199. Lin, J. Z., Wang, W. W., Hu, T. T., Zhu, G. Y., Li, L. N., Zhang, C. Y., Xu, Z., Yu, H. B., Wu, H. F., & Zhu, J. G. (2020). FOXM1 contributes to docetaxel resistance in castration-resistant prostate cancer by inducing AMPK/mTOR-mediated autophagy. Cancer Letters, 469, 481–489. https://doi.org/10.1016/j.canlet.2019.11.014

    Article  CAS  PubMed  Google Scholar 

  200. Chen, Z., Jiang, Q., Zhu, P., Chen, Y., Xie, X., Du, Z., Jiang, L., & Tang, W. (2019). NPRL2 enhances autophagy and the resistance to Everolimus in castration-resistant prostate cancer. The Prostate, 79, 44–53. https://doi.org/10.1002/pros.23709

    Article  CAS  PubMed  Google Scholar 

  201. Chen, J., Xu, D., Wang, T., Yang, Z., Yang, Y., He, K., Zhao, L. (2022). HMGB1 promotes the development of castration‑resistant prostate cancer by regulating androgen receptor activation. Oncology Reports, 48. https://doi.org/10.3892/or.2022.8412

  202. Lv, D. J., Song, X. L., Huang, B., Yu, Y. Z., Shu, F. P., Wang, C., Chen, H., Zhang, H. B., & Zhao, S. C. (2019). HMGB1 promotes prostate cancer development and metastasis by interacting with Brahma-related gene 1 and activating the Akt signaling pathway. Theranostics, 9, 5166–5182. https://doi.org/10.7150/thno.33972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Jung, A. R., Kim, G. E., Kim, M. Y., Ha, U. S., Hong, S. H., Lee, J. Y., Kim, S. W., & Park, Y. H. (2021). HMGB1 promotes tumor progression and invasion through HMGB1/TNFR1/NF-κB axis in castration-resistant prostate cancer. American Journal of Cancer Research, 11, 2215–2227.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Zhang, Y. X., Yuan, Y. Q., Zhang, X. Q., Huang, D. L., Wei, Y. Y., & Yang, J. G. (2017). HMGB1-mediated autophagy confers resistance to gemcitabine in hormone-independent prostate cancer cells. Oncology Letters, 14, 6285–6290. https://doi.org/10.3892/ol.2017.6965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Yu, Y., Yang, F. H., Zhang, W. T., Guo, Y. D., Ye, L., & Yao, X. D. (2021). Mesenchymal stem cells desensitize castration-resistant prostate cancer to docetaxel chemotherapy via inducing TGF-β1-mediated cell autophagy. Cell & Bioscience, 11, 7. https://doi.org/10.1186/s13578-020-00494-0

    Article  CAS  Google Scholar 

  206. Wang, Q., He, W. Y., Zeng, Y. Z., Hossain, A., & Gou, X. (2018). Inhibiting autophagy overcomes docetaxel resistance in castration-resistant prostate cancer cells. International Urology and Nephrology, 50, 675–686. https://doi.org/10.1007/s11255-018-1801-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Nguyen, H. G., Yang, J. C., Kung, H. J., Shi, X. B., Tilki, D., Lara, P. N., Jr., DeVere White, R. W., Gao, A. C., & Evans, C. P. (2014). Targeting autophagy overcomes Enzalutamide resistance in castration-resistant prostate cancer cells and improves therapeutic response in a xenograft model. Oncogene, 33, 4521–4530. https://doi.org/10.1038/onc.2014.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Peng, K., Sun, A., Zhu, J., Gao, J., Li, Y., Shao, G., Yang, W., & Lin, Q. (2021). Restoration of the ATG5-dependent autophagy sensitizes DU145 prostate cancer cells to chemotherapeutic drugs. Oncology Letters, 22, 638. https://doi.org/10.3892/ol.2021.12899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Mortezavi, A., Salemi, S., Kranzbühler, B., Gross, O., Sulser, T., Simon, H. U., & Eberli, D. (2019). Inhibition of autophagy significantly increases the antitumor effect of Abiraterone in prostate cancer. World Journal of Urology, 37, 351–358. https://doi.org/10.1007/s00345-018-2385-5

    Article  CAS  PubMed  Google Scholar 

  210. Losada-García, A., Salido-Guadarrama, I., Cortes-Ramirez, S. A., Cruz-Burgos, M., Morales-Pacheco, M., Vazquez-Santillan, K., Rodriguez-Martinez, G., González-Ramírez, I., Gonzalez-Covarrubias, V., Perez-Plascencia, C., et al. (2023). SFRP1 induces a stem cell phenotype in prostate cancer cells. Frontiers in Cell and Developmental Biology, 11, 1096923. https://doi.org/10.3389/fcell.2023.1096923

    Article  PubMed  PubMed Central  Google Scholar 

  211. Song, X. L., Huang, B., Zhou, B. W., Wang, C., Liao, Z. W., Yu, Y., & Zhao, S. C. (2018). miR-1301–3p promotes prostate cancer stem cell expansion by targeting SFRP1 and GSK3β. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 99, 369–374. https://doi.org/10.1016/j.biopha.2018.01.086

    Article  CAS  Google Scholar 

  212. Pérez, G., López-Moncada, F., Indo, S., Torres, M. J., Castellón, E. A., Contreras, H. R. (2021). Knockdown of ZEB1 reverses cancer stem cell properties in prostate cancer cells. Oncology Reports, 45. https://doi.org/10.3892/or.2021.8009

  213. Cheng, J. W., Duan, L. X., Yu, Y., Wang, P., Feng, J. L., Feng, G. Z., & Liu, Y. (2021). Bone marrow mesenchymal stem cells promote prostate cancer cell stemness via cell-cell contact to activate the Jagged1/Notch1 pathway. Cell & Bioscience, 11, 87. https://doi.org/10.1186/s13578-021-00599-0

    Article  CAS  Google Scholar 

  214. Zhang, Y., He, L., Sadagopan, A., Ma, T., Dotti, G., Wang, Y., Zheng, H., Gao, X., Wang, D., DeLeo, A. B., et al. (2021). Targeting radiation-resistant prostate cancer stem cells by B7–H3 CAR T cells. Molecular Cancer Therapeutics, 20, 577–588. https://doi.org/10.1158/1535-7163.mct-20-0446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Castellón, E. A., Indo, S., Contreras, H. R. (2022). Cancer stemness/epithelial-mesenchymal transition axis influences metastasis and castration resistance in prostate cancer: Potential therapeutic target. International Journal of Molecular Sciences, 23. https://doi.org/10.3390/ijms232314917

  216. Li, P., Yang, R., & Gao, W. Q. (2014). Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Molecular Cancer, 13, 55. https://doi.org/10.1186/1476-4598-13-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yan, J., & Tang, D. (2014). Prostate cancer stem-like cells proliferate slowly and resist etoposide-induced cytotoxicity via enhancing DNA damage response. Experimental Cell Research, 328, 132–142. https://doi.org/10.1016/j.yexcr.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  218. Jeter, C. R., Liu, B., Liu, X., Chen, X., Liu, C., Calhoun-Davis, T., Repass, J., Zaehres, H., Shen, J. J., & Tang, D. G. (2011). NANOG promotes cancer stem cell characteristics and prostate cancer resistance to androgen deprivation. Oncogene, 30, 3833–3845. https://doi.org/10.1038/onc.2011.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Ramesh, V., Brabletz, T., & Ceppi, P. (2020). Targeting EMT in cancer with repurposed metabolic inhibitors. Trends in Cancer, 6, 942–950. https://doi.org/10.1016/j.trecan.2020.06.005

    Article  CAS  PubMed  Google Scholar 

  220. Guo, Z., Ashrafizadeh, M., Zhang, W., Zou, R., Sethi, G., & Zhang, X. (2023). Molecular profile of metastasis, cell plasticity and EMT in pancreatic cancer: A pre-clinical connection to aggressiveness and drug resistance. Cancer Metastasis Reviews. https://doi.org/10.1007/s10555-023-10125-y

    Article  PubMed  Google Scholar 

  221. He, P., Dai, Q., & Wu, X. (2023). New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. Environmental Research, 229, 115672. https://doi.org/10.1016/j.envres.2023.115672

    Article  CAS  PubMed  Google Scholar 

  222. Zhang, Z. H., Liu, M. D., Yao, K., Xu, S., Yu, D. X., Xie, D. D., & Xu, D. X. (2023). Vitamin D deficiency aggravates growth and metastasis of prostate cancer through promoting EMT in two β-catenin-related mechanisms. The Journal of Nutritional Biochemistry, 111, 109177. https://doi.org/10.1016/j.jnutbio.2022.109177

    Article  CAS  PubMed  Google Scholar 

  223. Qiao, P., & Tian, Z. (2022). Atractylenolide I inhibits EMT and enhances the antitumor effect of cabozantinib in prostate cancer via targeting Hsp27. Frontiers in Oncology, 12, 1084884. https://doi.org/10.3389/fonc.2022.1084884

    Article  CAS  PubMed  Google Scholar 

  224. Pang, X., Zhang, J., He, X., Gu, Y., Qian, B. Z., Xie, R., Yu, W., Zhang, X., Li, T., Shi, X., et al. (2021). SPP1 promotes enzalutamide resistance and epithelial-mesenchymal-transition activation in castration-resistant prostate cancer via PI3K/AKT and ERK1/2 pathways. Oxidative Medicine and Cellular Longevity, 2021, 5806602. https://doi.org/10.1155/2021/5806602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chen, B., Zhang, Y., Li, C., Xu, P., Gao, Y., & Xu, Y. (2021). CNTN-1 promotes docetaxel resistance and epithelial-to-mesenchymal transition via the PI3K/Akt signaling pathway in prostate cancer. Archives of Medical Science : AMS, 17, 152–165. https://doi.org/10.5114/aoms.2020.92939

    Article  CAS  PubMed  Google Scholar 

  226. Rajput, M., Singh, R., Singh, N., & Singh, R. P. (2021). EGFR-mediated Rad51 expression potentiates intrinsic resistance in prostate cancer via EMT and DNA repair pathways. Life Sciences, 286, 120031. https://doi.org/10.1016/j.lfs.2021.120031

    Article  CAS  PubMed  Google Scholar 

  227. Choi, J. D., Kim, T. J., Jeong, B. C., Jeon, H. G., Jeon, S. S., Kang, M. Y., Yeom, S. Y., & Seo, S. I. (2021). ISL1 promotes enzalutamide resistance in castration-resistant prostate cancer (CRPC) through epithelial to mesenchymal transition (EMT). Scientific Reports, 11, 21984. https://doi.org/10.1038/s41598-021-01003-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Zhang, B., Li, Y., Wu, Q., Xie, L., Barwick, B., Fu, C., Li, X., Wu, D., Xia, S., Chen, J., et al. (2021). Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nature Communications, 12, 1714. https://doi.org/10.1038/s41467-021-21976-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Chen, D., Chou, F. J., Chen, Y., Huang, C. P., Tian, H., Wang, Y., Niu, Y., You, B., Yeh, S., Xing, N., et al. (2022). Targeting the radiation-induced ARv7-mediated circNHS/miR-512-5p/XRCC5 signaling with Quercetin increases prostate cancer radiosensitivity. Journal of Experimental & Clinical Cancer Research : CR, 41, 235. https://doi.org/10.1186/s13046-022-02287-4

    Article  CAS  PubMed Central  Google Scholar 

  230. Zhang, X., Huang, J., Yu, C., Xiang, L., Li, L., Shi, D., & Lin, F. (2020). Quercetin enhanced paclitaxel therapeutic effects towards PC-3 prostate cancer through ER stress induction and ROS production. OncoTargets and Therapy, 13, 513–523. https://doi.org/10.2147/ott.S228453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Shu, Y., Xie, B., Liang, Z., & Chen, J. (2018). Quercetin reverses the doxorubicin resistance of prostate cancer cells by downregulating the expression of c-met. Oncology Letters, 15, 2252–2258. https://doi.org/10.3892/ol.2017.7561

    Article  CAS  PubMed  Google Scholar 

  232. Lu, X., Yang, F., Chen, D., Zhao, Q., Chen, D., Ping, H., & Xing, N. (2020). Quercetin reverses docetaxel resistance in prostate cancer via androgen receptor and PI3K/Akt signaling pathways. International Journal of Biological Sciences, 16, 1121–1134. https://doi.org/10.7150/ijbs.41686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Serttas, R., Koroglu, C., & Erdogan, S. (2021). Eupatilin inhibits the proliferation and migration of prostate cancer cells through modulation of PTEN and NF-κB signaling. Anti-cancer Agents in Medicinal Chemistry, 21, 372–382. https://doi.org/10.2174/1871520620666200811113549

    Article  CAS  PubMed  Google Scholar 

  234. Wang, P., Henning, S. M., Heber, D., & Vadgama, J. V. (2015). Sensitization to docetaxel in prostate cancer cells by green tea and quercetin. The Journal of Nutritional Biochemistry, 26, 408–415. https://doi.org/10.1016/j.jnutbio.2014.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Bao, X., Zhu, J., Ren, C., Zhao, A., Zhang, M., Zhu, Z., Lu, X., Zhang, Y., Li, X., Sima, X., et al. (2021). β-elemonic acid inhibits growth and triggers apoptosis in human castration-resistant prostate cancer cells through the suppression of JAK2/STAT3/MCL-1 and NF-ĸB signal pathways. Chemico-Biological Interactions, 342, 109477. https://doi.org/10.1016/j.cbi.2021.109477

    Article  CAS  PubMed  Google Scholar 

  236. Liu, Y. Q., Wang, S. K., Xu, Q. Q., Yuan, H. Q., Guo, Y. X., Wang, Q., Kong, F., Lin, Z. M., Sun, D. Q., Wang, R. M., et al. (2019). Acetyl-11-keto-β-boswellic acid suppresses docetaxel-resistant prostate cancer cells in vitro and in vivo by blocking Akt and Stat3 signaling, thus suppressing chemoresistant stem cell-like properties. Acta Pharmacologica Sinica, 40, 689–698. https://doi.org/10.1038/s41401-018-0157-9

    Article  CAS  PubMed  Google Scholar 

  237. Cao, H., Wang, D., Gao, R., Feng, Y., & Chen, L. (2022). Qi Ling decreases paclitaxel resistance in the human prostate cancer by reversing tumor-associated macrophages function. Aging, 14, 1812–1821. https://doi.org/10.18632/aging.203904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Thaper, D., Vahid, S., Kaur, R., Kumar, S., Nouruzi, S., Bishop, J. L., Johansson, M., & Zoubeidi, A. (2018). Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Scientific Reports, 8, 17307. https://doi.org/10.1038/s41598-018-35612-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Liu, Q., Tong, D., Liu, G., Xu, J., Do, K., Geary, K., Zhang, D., Zhang, J., Zhang, Y., Li, Y., et al. (2017). Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death & Disease, 8, e3007. https://doi.org/10.1038/cddis.2017.417

    Article  CAS  Google Scholar 

  240. Ge, J., Wang, P., Ma, H., & Zhang, J. (2022). Solamargine inhibits prostate cancer cell growth and enhances the therapeutic efficacy of docetaxel via Akt signaling. Journal of Oncology, 2022, 9055954. https://doi.org/10.1155/2022/9055954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Erdogan, S., Turkekul, K., Serttas, R., & Erdogan, Z. (2017). The natural flavonoid apigenin sensitizes human CD44(+) prostate cancer stem cells to cisplatin therapy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 88, 210–217. https://doi.org/10.1016/j.biopha.2017.01.056

    Article  CAS  Google Scholar 

  242. Thamilselvan, V., Menon, M., & Thamilselvan, S. (2011). Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 β/β-catenin pathway. International Journal of Cancer, 129, 2916–2927. https://doi.org/10.1002/ijc.25949

    Article  CAS  PubMed  Google Scholar 

  243. Hellsten, R., Stiehm, A., Palominos, M., Persson, M., & Bjartell, A. (2022). The STAT3 inhibitor GPB730 enhances the sensitivity to enzalutamide in prostate cancer cells. Translational Oncology, 24, 101495. https://doi.org/10.1016/j.tranon.2022.101495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Liu, C., Lou, W., Armstrong, C., Zhu, Y., Evans, C. P., & Gao, A. C. (2015). Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. The Prostate, 75, 1341–1353. https://doi.org/10.1002/pros.23015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. Chen, Y., Gera, L., Zhang, S., Li, X., Yang, Y., Mamouni, K., Wu, A. Y., Liu, H., Kucuk, O., & Wu, D. (2019). Small molecule BKM1972 inhibits human prostate cancer growth and overcomes docetaxel resistance in intraosseous models. Cancer Letters, 446, 62–72. https://doi.org/10.1016/j.canlet.2019.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Imrali, A., Mao, X., Yeste-Velasco, M., Shamash, J., & Lu, Y. (2016). Rapamycin inhibits prostate cancer cell growth through cyclin D1 and enhances the cytotoxic efficacy of cisplatin. American Journal of Cancer Research, 6, 1772–1784.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Alshaker, H., Wang, Q., Kawano, Y., Arafat, T., Böhler, T., Winkler, M., Cooper, C., & Pchejetski, D. (2016). Everolimus (RAD001) sensitizes prostate cancer cells to docetaxel by down-regulation of HIF-1α and sphingosine kinase 1. Oncotarget, 7, 80943–80956. https://doi.org/10.18632/oncotarget.13115

    Article  PubMed  PubMed Central  Google Scholar 

  248. Luo, Y., Li, M., Zuo, X., Basourakos, S. P., Zhang, J., Zhao, J., Han, Y., Lin, Y., Wang, Y., Jiang, Y., et al. (2018). β-catenin nuclear translocation induced by HIF-1α overexpression leads to the radioresistance of prostate cancer. International Journal of Oncology, 52, 1827–1840. https://doi.org/10.3892/ijo.2018.4368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Zhang, P., Singh, A., Yegnasubramanian, S., Esopi, D., Kombairaju, P., Bodas, M., Wu, H., Bova, S. G., & Biswal, S. (2010). Loss of Kelch-like ECH-associated protein 1 function in prostate cancer cells causes chemoresistance and radioresistance and promotes tumor growth. Molecular Cancer Therapeutics, 9, 336–346. https://doi.org/10.1158/1535-7163.Mct-09-0589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Huang, Z. C., Huang, J., Huang, C. K., Hou, Y., & Zhu, B. (2023). Euchromatic histone lysine methyltransferase 2 facilitates radioresistance in prostate cancer by repressing endoplasmic reticulum protein 29 transcription. The Kaohsiung Journal of Medical Sciences. https://doi.org/10.1002/kjm2.12661

    Article  PubMed  Google Scholar 

  251. El Bezawy, R., Tinelli, S., Tortoreto, M., Doldi, V., Zuco, V., Folini, M., Stucchi, C., Rancati, T., Valdagni, R., Gandellini, P., et al. (2019). miR-205 enhances radiation sensitivity of prostate cancer cells by impairing DNA damage repair through PKCε and ZEB1 inhibition. Journal of Experimental & Clinical Cancer Research : CR, 38, 51. https://doi.org/10.1186/s13046-019-1060-z

    Article  PubMed  PubMed Central  Google Scholar 

  252. Marampon, F., Gravina, G., Ju, X., Vetuschi, A., Sferra, R., Casimiro, M., Pompili, S., Festuccia, C., Colapietro, A., Gaudio, E., et al. (2016). Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget, 7, 5383–5400. https://doi.org/10.18632/oncotarget.6579

    Article  PubMed  Google Scholar 

  253. Wu, K., Wu, M., Yang, H., Diao, R., & Zeng, H. (2023). Hypoxia promotes conversion to a stem cell phenotype in prostate cancer cells by activating HIF-1α/Notch1 signaling pathway. Clinical & Translational Oncology : Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. https://doi.org/10.1007/s12094-023-03093-w

    Article  Google Scholar 

  254. Owari, T., Tanaka, N., Nakai, Y., Miyake, M., Anai, S., Kishi, S., Mori, S., Fujiwara-Tani, R., Hojo, Y., Mori, T., et al. (2022). 5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells. British Journal of Cancer, 127, 350–363. https://doi.org/10.1038/s41416-022-01789-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Gu, H., Liu, M., Ding, C., Wang, X., Wang, R., Wu, X., & Fan, R. (2016). Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Medicine, 5, 1174–1182. https://doi.org/10.1002/cam4.664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Shang, Z. F., Wei, Q., Yu, L., Huang, F., Xiao, B. B., Wang, H., Song, M., Wang, L., Zhou, J., Wang, J., et al. (2016). Suppression of PC-1/PrLZ sensitizes prostate cancer cells to ionizing radiation by attenuating DNA damage repair and inducing autophagic cell death. Oncotarget, 7, 62340–62351. https://doi.org/10.18632/oncotarget.11470

    Article  PubMed  PubMed Central  Google Scholar 

  257. Schwarz, F. M., Schniewind, I., Besso, M. J., Lange, S., Linge, A., Patil, S. G., Löck, S., Klusa, D., Dietrich, A., Voss-Böhme, A., et al. (2022). Plasticity within aldehyde dehydrogenase-positive cells determines prostate cancer radiosensitivity. Molecular Cancer Research : MCR, 20, 794–809. https://doi.org/10.1158/1541-7786.Mcr-21-0806

    Article  CAS  PubMed  Google Scholar 

  258. Xu, Z., Zhang, Y., Ding, J., Hu, W., Tan, C., Wang, M., Tang, J., & Xu, Y. (2018). miR-17-3p Downregulates mitochondrial antioxidant enzymes and enhances the radiosensitivity of prostate cancer cells. Molecular Therapy. Nucleic Acids, 13, 64–77. https://doi.org/10.1016/j.omtn.2018.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Fan, Y., Fan, H., Quan, Z., & Wu, X. (2021). Ionizing radiation combined with PARP1 inhibitor reduces radioresistance in prostate cancer with RB1/TP53 loss. Cancer Investigation, 39, 423–434. https://doi.org/10.1080/07357907.2021.1899200

    Article  CAS  PubMed  Google Scholar 

  260. Pawar, J. S., Al-Amin, M. Y., & Hu, C. D. (2023). JNJ-64619178 radiosensitizes and suppresses fractionated ionizing radiation-induced neuroendocrine differentiation (NED) in prostate cancer. Frontiers in Oncology, 13, 1126482. https://doi.org/10.3389/fonc.2023.1126482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. He, Z., Yuan, J., Shen, F., Zeng, F., Qi, P., Wang, Z., & Zhai, Z. (2020). Atorvastatin enhances effects of radiotherapy on prostate cancer cells and xenograft tumor mice through triggering interaction between Bcl-2 and MSH2. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 26, e923560. https://doi.org/10.12659/msm.923560

    Article  CAS  PubMed  Google Scholar 

  262. Rajput, M., Mishra, D., Kumar, K., & Singh, R. P. (2022). Silibinin radiosensitizes EGF receptor-knockdown prostate cancer cells by attenuating DNA repair pathways. Journal of Cancer Prevention, 27, 170–181. https://doi.org/10.15430/jcp.2022.27.3.170

    Article  PubMed  PubMed Central  Google Scholar 

  263. Li, J., Wang, Z., Li, H., Cao, J., Nan, N., Zhai, X., Liu, Y., & Chong, T. (2022). Resveratrol inhibits TRAF6/PTCH/SMO signal and regulates prostate cancer progression. Cytotechnology, 74, 549–558. https://doi.org/10.1007/s10616-022-00544-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Zhang, L., Lin, Z., Chen, Y., Gao, D., Wang, P., Lin, Y., Wang, Y., Wang, F., Han, Y., & Yuan, H. (2022). Co-delivery of Docetaxel and Resveratrol by liposomes synergistically boosts antitumor efficiency against prostate cancer. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 174, 106199. https://doi.org/10.1016/j.ejps.2022.106199

    Article  CAS  PubMed  Google Scholar 

  265. Han, D. S., Lee, H. J., & Lee, E. O. (2022). Resveratrol suppresses serum-induced vasculogenic mimicry through impairing the EphA2/twist-VE-cadherin/AKT pathway in human prostate cancer PC-3 cells. Scientific Reports, 12, 20125. https://doi.org/10.1038/s41598-022-24414-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Fang, Y., DeMarco, V. G., & Nicholl, M. B. (2012). Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Science, 103, 1090–1098. https://doi.org/10.1111/j.1349-7006.2012.02272.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Zhang, T., Zhang, L., Zhang, T., Fan, J., Wu, K., Guan, Z., Wang, X., Li, L., Hsieh, J. T., He, D., et al. (2014). Metformin sensitizes prostate cancer cells to radiation through EGFR/p-DNA-PKCS in vitro and in vivo. Radiation Research, 181, 641–649. https://doi.org/10.1667/rr13561.1

    Article  CAS  PubMed  Google Scholar 

  268. Potiron, V. A., Abderrahmani, R., Giang, E., Chiavassa, S., Di Tomaso, E., Maira, S. M., Paris, F., & Supiot, S. (2013). Radiosensitization of prostate cancer cells by the dual PI3K/mTOR inhibitor BEZ235 under normoxic and hypoxic conditions. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 106, 138–146. https://doi.org/10.1016/j.radonc.2012.11.014

    Article  CAS  PubMed  Google Scholar 

  269. Zhang, Y., Xu, Z., Ding, J., Tan, C., Hu, W., Li, Y., Huang, W., & Xu, Y. (2018). HZ08 suppresses RelB-activated MnSOD expression and enhances radiosensitivity of prostate cancer cells. Journal of Experimental & Clinical Cancer Research : CR, 37, 174. https://doi.org/10.1186/s13046-018-0849-5

    Article  CAS  PubMed Central  Google Scholar 

  270. Chen, Y. A., Tzeng, D. T. W., Huang, Y. P., Lin, C. J., Lo, U. G., Wu, C. L., Lin, H., Hsieh, J. T., Tang, C. H., Lai, C. H. (2018). Antrocin sensitizes prostate cancer cells to radiotherapy through inhibiting PI3K/AKT and MAPK signaling pathways. Cancers, 11. https://doi.org/10.3390/cancers11010034

  271. Ma, X., Wang, Z., Ren, H., Bao, X., Zhang, Y., Wang, B., & Ruan, D. (2020). Long non-coding RNA GAS5 suppresses tumor progression and enhances the radiosensitivity of prostate cancer through the miR-320a/RAB21 axis. Cancer Management and Research, 12, 8833–8845. https://doi.org/10.2147/cmar.S244123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Zhu, L., Zhu, B., Yang, L., Zhao, X., Jiang, H., & Ma, F. (2014). RelB regulates Bcl-xl expression and the irradiation-induced apoptosis of murine prostate cancer cells. Biomedical Reports, 2, 354–358. https://doi.org/10.3892/br.2014.250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Fan, L., Xu, S., Zhang, F., Cui, X., Fazli, L., Gleave, M., Clark, D. J., Yang, A., Hussain, A., Rassool, F., et al. (2020). Histone demethylase JMJD1A promotes expression of DNA repair factors and radio-resistance of prostate cancer cells. Cell Death & Disease, 11, 214. https://doi.org/10.1038/s41419-020-2405-4

    Article  CAS  Google Scholar 

  274. Chang, L., Graham, P. H., Hao, J., Ni, J., Bucci, J., Cozzi, P. J., Kearsley, J. H., & Li, Y. (2014). PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell Death & Disease, 5, e1437. https://doi.org/10.1038/cddis.2014.415

    Article  CAS  Google Scholar 

  275. Chen, Y. Y., Luo, L. P., & Deng, K. C. (2023). Circular RNA LPAR3 targets JPT1 via microRNA-513b-5p to facilitate glycolytic activation but repress prostate cancer radiosensitivity. Acta Biochimica Polonica, 70, 153–162. https://doi.org/10.18388/abp.2020_6379

    Article  CAS  PubMed  Google Scholar 

  276. Hoey, C., Ray, J., Jeon, J., Huang, X., Taeb, S., Ylanko, J., Andrews, D. W., Boutros, P. C., & Liu, S. K. (2018). miRNA-106a and prostate cancer radioresistance: A novel role for LITAF in ATM regulation. Molecular Oncology, 12, 1324–1341. https://doi.org/10.1002/1878-0261.12328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Chen, X., Chen, F., Ren, Y., Weng, G., Keng, P. C., Chen, Y., & Lee, S. O. (2019). Glucocorticoid receptor upregulation increases radioresistance and triggers androgen independence of prostate cancer. The Prostate, 79, 1386–1398. https://doi.org/10.1002/pros.23861

    Article  CAS  PubMed  Google Scholar 

  278. Wang, W., Liu, M., Guan, Y., & Wu, Q. (2016). Hypoxia-responsive Mir-301a and Mir-301b promote radioresistance of prostate cancer cells via downregulating NDRG2. Medical Science Monitor : International Medical Journal of Experimental and Clinical Research, 22, 2126–2132. https://doi.org/10.12659/msm.896832

    Article  CAS  PubMed  Google Scholar 

  279. Kajanne, R., Miettinen, P., Tenhunen, M., & Leppä, S. (2009). Transcription factor AP-1 promotes growth and radioresistance in prostate cancer cells. International Journal of Oncology, 35, 1175–1182. https://doi.org/10.3892/ijo_00000434

    Article  CAS  PubMed  Google Scholar 

  280. Du, S., Zhang, P., Ren, W., Yang, F., & Du, C. (2020). Circ-ZNF609 accelerates the radioresistance of prostate cancer cells by promoting the glycolytic metabolism through miR-501-3p/HK2 axis. Cancer Management and Research, 12, 7487–7499. https://doi.org/10.2147/cmar.S257441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Wang, T., Huang, J., Vue, M., Alavian, M. R., Goel, H. L., Altieri, D. C., Languino, L. R., & FitzGerald, T. J. (2019). α(v)β(3) Integrin mediates radioresistance of prostate cancer cells through regulation of survivin. Molecular Cancer Research : MCR, 17, 398–408. https://doi.org/10.1158/1541-7786.Mcr-18-0544

    Article  CAS  PubMed  Google Scholar 

  282. Broustas, C. G., Duval, A. J., Chaudhary, K. R., Friedman, R. A., Virk, R. K., & Lieberman, H. B. (2020). Targeting MEK5 impairs nonhomologous end-joining repair and sensitizes prostate cancer to DNA damaging agents. Oncogene, 39, 2467–2477. https://doi.org/10.1038/s41388-020-1163-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Yao, B., Liu, B., Shi, L., Li, X., Ren, C., Cai, M., Wang, W., Li, J., Sun, Y., Wu, Y., et al. (2017). PAFR selectively mediates radioresistance and irradiation-induced autophagy suppression in prostate cancer cells. Oncotarget, 8, 13846–13854. https://doi.org/10.18632/oncotarget.14647

    Article  PubMed  PubMed Central  Google Scholar 

  284. Ciccarelli, C., Di Rocco, A., Gravina, G. L., Mauro, A., Festuccia, C., Del Fattore, A., Berardinelli, P., De Felice, F., Musio, D., Bouché, M., et al. (2018). Disruption of MEK/ERK/c-Myc signaling radiosensitizes prostate cancer cells in vitro and in vivo. Journal of Cancer Research and Clinical Oncology, 144, 1685–1699. https://doi.org/10.1007/s00432-018-2696-3

    Article  CAS  PubMed  Google Scholar 

  285. Chen, X., Chen, F., Ren, Y., Weng, G., Xu, L., Xue, X., Keng, P. C., Lee, S. O., & Chen, Y. (2019). IL-6 signaling contributes to radioresistance of prostate cancer through key DNA repair-associated molecules ATM, ATR, and BRCA 1/2. Journal of Cancer Research and Clinical Oncology, 145, 1471–1484. https://doi.org/10.1007/s00432-019-02917-z

    Article  CAS  PubMed  Google Scholar 

  286. Ruan, H., Bao, L., Tao, Z., & Chen, K. (2021). Flightless I homolog reverses enzalutamide resistance through PD-L1-mediated immune evasion in prostate cancer. Cancer Immunology Research, 9, 838–852. https://doi.org/10.1158/2326-6066.Cir-20-0729

    Article  CAS  PubMed  Google Scholar 

  287. Kolijn, K., Verhoef, E. I., Smid, M., Böttcher, R., Jenster, G. W., Debets, R., & van Leenders, G. (2018). Epithelial-mesenchymal transition in human prostate cancer demonstrates enhanced immune evasion marked by IDO1 expression. Cancer Research, 78, 4671–4679. https://doi.org/10.1158/0008-5472.Can-17-3752

    Article  CAS  PubMed  Google Scholar 

  288. Chen, Q. H., Li, B., Liu, D. G., Zhang, B., Yang, X., & Tu, Y. L. (2020). LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1. Cancer Cell International, 20, 394. https://doi.org/10.1186/s12935-020-01481-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Kan, L., Huang, Y., Liu, Z. (2023). JUN and ATF3 are deficient in prostate cancer patients and their delivery in vivo via lipid nanoparticles has therapeutic efficacy by enhancing immune surveillance. Pharmacological Research, 106753. https://doi.org/10.1016/j.phrs.2023.106753

  290. Drehmer, D., Mesquita Luiz, J. P., Hernandez, C. A. S., Alves-Filho, J. C., Hussell, T., Townsend, P. A., & Moncada, S. (2022). Nitric oxide favours tumour-promoting inflammation through mitochondria-dependent and -independent actions on macrophages. Redox Biology, 54, 102350. https://doi.org/10.1016/j.redox.2022.102350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Won, H., Moreira, D., Gao, C., Duttagupta, P., Zhao, X., Manuel, E., Diamond, D., Yuan, Y. C., Liu, Z., Jones, J., et al. (2017). TLR9 expression and secretion of LIF by prostate cancer cells stimulates accumulation and activity of polymorphonuclear MDSCs. Journal of Leukocyte Biology, 102, 423–436. https://doi.org/10.1189/jlb.3MA1016-451RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Groeger, S., Wu, F., Wagenlehner, F., Dansranjav, T., Ruf, S., Denter, F., & Meyle, J. (2022). PD-L1 up-regulation in prostate cancer cells by Porphyromonas gingivalis. Frontiers in Cellular and Infection Microbiology, 12, 935806. https://doi.org/10.3389/fcimb.2022.935806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Li, N., Liu, Q., Han, Y., Pei, S., Cheng, B., Xu, J., Miao, X., Pan, Q., Wang, H., Guo, J., et al. (2022). ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nature Communications, 13, 7281. https://doi.org/10.1038/s41467-022-34871-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  294. Imamura, R., Kitagawa, S., Kubo, T., Irie, A., Kariu, T., Yoneda, M., Kamba, T., & Imamura, T. (2021). Prostate cancer C5a receptor expression and augmentation of cancer cell proliferation, invasion, and PD-L1 expression by C5a. The Prostate, 81, 147–156. https://doi.org/10.1002/pros.24090

    Article  CAS  PubMed  Google Scholar 

  295. Zhang, Y., Zhu, S., Du, Y., Xu, F., Sun, W., Xu, Z., Wang, X., Qian, P., Zhang, Q., Feng, J., et al. (2022). RelB upregulates PD-L1 and exacerbates prostate cancer immune evasion. Journal of Experimental & Clinical Cancer Research : CR, 41, 66. https://doi.org/10.1186/s13046-022-02243-2

    Article  CAS  PubMed Central  Google Scholar 

  296. Wise, D. R., Schneider, J.A., Armenia, J., Febles, V. A., McLaughlin, B., Brennan, R., Thoren, K. L., Abida, W., Sfanos, K. S., De Marzo, A. M., et al. (2020). Dickkopf-1 can lead to immune evasion in metastatic castration-resistant prostate cancer. JCO Precision Oncology, 4. https://doi.org/10.1200/po.20.00097

  297. Su, W., Han, H. H., Wang, Y., Zhang, B., Zhou, B., Cheng, Y., Rumandla, A., Gurrapu, S., Chakraborty, G., Su, J., et al. (2019). The polycomb repressor complex 1 drives double-negative prostate cancer metastasis by coordinating stemness and immune suppression. Cancer Cell, 36, 139-155.e110. https://doi.org/10.1016/j.ccell.2019.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Bancaro, N., Calì, B., Troiani, M., Elia, A. R., Arzola, R. A., Attanasio, G., Lai, P., Crespo, M., Gurel, B., Pereira, R., et al. (2023). Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell, 41, 602-619.e611. https://doi.org/10.1016/j.ccell.2023.02.004

    Article  CAS  PubMed  Google Scholar 

  299. Moon, S. J., Jeong, B. C., Kim, H. J., Lim, J. E., Kim, H. J., Kwon, G. Y., Jackman, J. A., & Kim, J. H. (2021). Bruceantin targets HSP90 to overcome resistance to hormone therapy in castration-resistant prostate cancer. Theranostics, 11, 958–973. https://doi.org/10.7150/thno.51478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  300. Castilla, C., Congregado, B., Conde, J. M., Medina, R., Torrubia, F. J., Japón, M. A., & Sáez, C. (2010). Immunohistochemical expression of Hsp60 correlates with tumor progression and hormone resistance in prostate cancer. Urology, 76(1017), e1011-1016. https://doi.org/10.1016/j.urology.2010.05.045

    Article  Google Scholar 

  301. Karantanos, T., Karanika, S., Wang, J., Yang, G., Dobashi, M., Park, S., Ren, C., Li, L., Basourakos, S. P., Hoang, A., et al. (2016). Caveolin-1 regulates hormone resistance through lipid synthesis, creating novel therapeutic opportunities for castration-resistant prostate cancer. Oncotarget, 7, 46321–46334. https://doi.org/10.18632/oncotarget.10113

    Article  PubMed  PubMed Central  Google Scholar 

  302. Zhang, Y., Linn, D., Liu, Z., Melamed, J., Tavora, F., Young, C. Y., Burger, A. M., & Hamburger, A. W. (2008). EBP1, an ErbB3-binding protein, is decreased in prostate cancer and implicated in hormone resistance. Molecular Cancer Therapeutics, 7, 3176–3186. https://doi.org/10.1158/1535-7163.Mct-08-0526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Castilla, C., Congregado, B., Chinchón, D., Torrubia, F. J., Japón, M. A., & Sáez, C. (2006). Bcl-xL is overexpressed in hormone-resistant prostate cancer and promotes survival of LNCaP cells via interaction with proapoptotic Bak. Endocrinology, 147, 4960–4967. https://doi.org/10.1210/en.2006-0502

    Article  CAS  PubMed  Google Scholar 

  304. Wilkinson, S., Ye, H., Karzai, F., Harmon, S. A., Terrigino, N. T., VanderWeele, D. J., Bright, J. R., Atway, R., Trostel, S. Y., Carrabba, N. V., et al. (2021). Nascent prostate cancer heterogeneity drives evolution and resistance to intense hormonal therapy. European Urology, 80, 746–757. https://doi.org/10.1016/j.eururo.2021.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Cheng, Q., Butler, W., Zhou, Y., Zhang, H., Tang, L., Perkinson, K., Chen, X., Jiang, X. S., McCall, S. J., Inman, B. A., et al. (2022). Pre-existing castration-resistant prostate cancer-like cells in primary prostate cancer promote resistance to hormonal therapy. European Urology, 81, 446–455. https://doi.org/10.1016/j.eururo.2021.12.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Edlind, M. P., & Hsieh, A. C. (2014). PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian Journal of Andrology, 16, 378–386. https://doi.org/10.4103/1008-682x.122876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Li, Q., Wang, M., Hu, Y., Zhao, E., Li, J., Ren, L., Wang, M., Xu, Y., Liang, Q., Zhang, D., et al. (2021). MYBL2 disrupts the Hippo-YAP pathway and confers castration resistance and metastatic potential in prostate cancer. Theranostics, 11, 5794–5812. https://doi.org/10.7150/thno.56604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Mateo, J., Seed, G., Bertan, C., Rescigno, P., Dolling, D., Figueiredo, I., Miranda, S., Nava Rodrigues, D., Gurel, B., Clarke, M., et al. (2020). Genomics of lethal prostate cancer at diagnosis and castration resistance. The Journal of Clinical Investigation, 130, 1743–1751. https://doi.org/10.1172/jci132031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Cheng, C., Wang, J., Xu, P., Zhang, K., Xin, Z., Zhao, H., Ji, Z., Zhang, M., Wang, D., He, Y., et al. (2022). Gremlin1 is a therapeutically targetable FGFR1 ligand that regulates lineage plasticity and castration resistance in prostate cancer. Nature Cancer, 3, 565–580. https://doi.org/10.1038/s43018-022-00380-3

    Article  CAS  PubMed  Google Scholar 

  310. Tcatchoff, L., Nespoulous, C., Pernollet, J. C., & Briand, L. (2006). A single lysyl residue defines the binding specificity of a human odorant-binding protein for aldehydes. FEBS Letters, 580, 2102–2108. https://doi.org/10.1016/j.febslet.2006.03.017

    Article  CAS  PubMed  Google Scholar 

  311. Jeong, J. H., Zhong, S., Li, F., Huang, C., Chen, X., Liu, Q., Peng, S., Park, H., Lee, Y.M., Dhillon, J., et al. (2023). Tumor-derived OBP2A promotes prostate cancer castration resistance. The Journal of Experimental Medicine, 220. https://doi.org/10.1084/jem.20211546

  312. Sharp, A., Coleman, I., Yuan, W., Sprenger, C., Dolling, D., Rodrigues, D. N., Russo, J. W., Figueiredo, I., Bertan, C., Seed, G., et al. (2019). Androgen receptor splice variant-7 expression emerges with castration resistance in prostate cancer. The Journal of Clinical Investigation, 129, 192–208. https://doi.org/10.1172/jci122819

    Article  PubMed  Google Scholar 

  313. Liu, Y., Yu, C., Shao, Z., Xia, X., Hu, T., Kong, W., He, X., Sun, W., Deng, Y., Liao, Y., et al. (2021). Selective degradation of AR-V7 to overcome castration resistance of prostate cancer. Cell Death & Disease, 12, 857. https://doi.org/10.1038/s41419-021-04162-0

    Article  CAS  Google Scholar 

  314. Yuan, S., He, S. H., Li, L. Y., Xi, S., Weng, H., Zhang, J. H., Wang, D. Q., Guo, M. M., Zhang, H., Wang, S. Y., et al. (2023). A potassium-chloride co-transporter promotes tumor progression and castration resistance of prostate cancer through m(6)A reader YTHDC1. Cell Death & Disease, 14, 7. https://doi.org/10.1038/s41419-022-05544-8

    Article  CAS  Google Scholar 

  315. Zhang, N., Huang, D., Ruan, X., Ng, A. T., Tsu, J. H., Jiang, G., Huang, J., Zhan, Y., & Na, R. (2023). CRISPR screening reveals gleason score and castration resistance related oncodriver ring finger protein 19 A (RNF19A) in prostate cancer. Drug Resistance Updates : Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 67, 100912. https://doi.org/10.1016/j.drup.2022.100912

    Article  CAS  PubMed  Google Scholar 

  316. Sun, Y., Cronin, M. F., Mendonça, M. C. P., Guo, J., & O’Driscoll, C. M. (2023). Sialic acid-targeted cyclodextrin-based nanoparticles deliver CSF-1R siRNA and reprogram tumour-associated macrophages for immunotherapy of prostate cancer. European Journal of Pharmaceutical Sciences : Official Journal of the European Federation for Pharmaceutical Sciences, 185, 106427. https://doi.org/10.1016/j.ejps.2023.106427

    Article  CAS  PubMed  Google Scholar 

  317. Tanaudommongkon, I., Tanaudommongkon, A., Prathipati, P., Nguyen, J. T., Keller, E. T., Dong, X. (2020). Curcumin nanoparticles and their cytotoxicity in docetaxel-resistant castration-resistant prostate cancer cells. Biomedicines, 8. https://doi.org/10.3390/biomedicines8080253

  318. Hoang, B., Ernsting, M. J., Tang, W. S., Bteich, J., Undzys, E., Kiyota, T., & Li, S. D. (2017). Cabazitaxel-conjugated nanoparticles for docetaxel-resistant and bone metastatic prostate cancer. Cancer Letters, 410, 169–179. https://doi.org/10.1016/j.canlet.2017.09.029

    Article  CAS  PubMed  Google Scholar 

  319. Peng, S., Zhang, X., Huang, H., Cheng, B., Xiong, Z., Du, T., Wu, J., & Huang, H. (2022). Glutathione-sensitive nanoparticles enhance the combined therapeutic effect of checkpoint kinase 1 inhibitor and cisplatin in prostate cancer. APL Bioengineering, 6, 046106. https://doi.org/10.1063/5.0126095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  320. Yan, J., Wang, Y., Zhang, X., Liu, S., Tian, C., & Wang, H. (2016). Targeted nanomedicine for prostate cancer therapy: Docetaxel and curcumin co-encapsulated lipid-polymer hybrid nanoparticles for the enhanced anti-tumor activity in vitro and in vivo. Drug Delivery, 23, 1757–1762. https://doi.org/10.3109/10717544.2015.1069423

    Article  CAS  PubMed  Google Scholar 

  321. Gao, Z., Huang, J., Xie, Z., Xin, P., Huang, H., Du, T., Wu, J., & Huang, H. (2022). Delivery of enzalutamide via nanoparticles for effectively inhibiting prostate cancer progression. Biomaterials Science, 10, 5187–5196. https://doi.org/10.1039/d2bm00697a

    Article  CAS  PubMed  Google Scholar 

  322. Xu, H., Sheng, G., Lu, L., Wang, C., Zhang, Y., Feng, L., Meng, L., Min, P., Zhang, L., Wang, Y., et al. (2021). GRPr-mediated photothermal and thermodynamic dual-therapy for prostate cancer with synergistic anti-apoptosis mechanism. Nanoscale, 13, 4249–4261. https://doi.org/10.1039/d0nr07196j

    Article  CAS  PubMed  Google Scholar 

  323. Wei, C. G., Zhang, R., Wei, L. Y., Pan, P., Zu, H., Liu, Y. Z., Wang, Y., & Shen, J. K. (2022). Calcium phosphate-based nanomedicine mediated CRISPR/Cas9 delivery for prostate cancer therapy. Frontiers in Bioengineering and Biotechnology, 10, 1078342. https://doi.org/10.3389/fbioe.2022.1078342

    Article  PubMed  PubMed Central  Google Scholar 

  324. Zhang, X., He, Z., Xiang, L., Li, L., Zhang, H., Lin, F., & Cao, H. (2019). Codelivery of GRP78 siRNA and docetaxel via RGD-PEG-DSPE/DOPA/CaP nanoparticles for the treatment of castration-resistant prostate cancer. Drug Design, Development and Therapy, 13, 1357–1372. https://doi.org/10.2147/dddt.S198400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Liang, S., Han, L., Mu, W., Jiang, D., Hou, T., Yin, X., Pang, X., Yang, R., Liu, Y., & Zhang, N. (2018). Carboplatin-loaded SMNDs to reduce GSH-mediated platinum resistance for prostate cancer therapy. Journal of Materials Chemistry. B, 6, 7004–7014. https://doi.org/10.1039/c8tb01721b

    Article  CAS  PubMed  Google Scholar 

  326. Guo, Q., Dong, Y., Zhang, Y., Fu, H., Chen, C., Wang, L., Yang, X., Shen, M., Yu, J., Chen, M., et al. (2021). Sequential release of pooled siRNAs and paclitaxel by aptamer-functionalized shell-core nanoparticles to overcome paclitaxel resistance of prostate cancer. ACS Applied Materials & Interfaces, 13, 13990–14003. https://doi.org/10.1021/acsami.1c00852

    Article  CAS  Google Scholar 

  327. Nagesh, P. K. B., Chowdhury, P., Hatami, E., Boya, V. K. N., Kashyap, V. K., Khan, S., Hafeez, B. B., Chauhan, S. C., Jaggi, M., Yallapu, M. M. (2018). miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers, 10. https://doi.org/10.3390/cancers10090289

  328. Singh, S. K., Lillard, J. W., Jr., & Singh, R. (2018). Reversal of drug resistance by planetary ball milled (PBM) nanoparticle loaded with resveratrol and docetaxel in prostate cancer. Cancer Letters, 427, 49–62. https://doi.org/10.1016/j.canlet.2018.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Hara, D., Tao, W., Schmidt, R. M., Yang, Y. P., Daunert, S., Dogan, N., Ford, J. C., Pollack, A., Shi, J. (2022). Boosted radiation bystander effect of PSMA-targeted gold nanoparticles in prostate cancer radiosensitization. Nanomaterials (Basel, Switzerland), 12. https://doi.org/10.3390/nano12244440

  330. Zhang, X., Liu, N., Shao, Z., Qiu, H., Yao, H., Ji, J., Wang, J., Lu, W., Chen, R. C., & Zhang, L. (2017). Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy. Nanomedicine : Nanotechnology, Biology, and Medicine, 13, 1309–1321. https://doi.org/10.1016/j.nano.2017.01.015

    Article  CAS  PubMed  Google Scholar 

  331. Mirjolet, C., Boudon, J., Loiseau, A., Chevrier, S., Boidot, R., Oudot, A., Collin, B., Martin, E., Joy, P. A., Millot, N., et al. (2017). Docetaxel-titanate nanotubes enhance radiosensitivity in an androgen-independent prostate cancer model. International Journal of Nanomedicine, 12, 6357–6364. https://doi.org/10.2147/ijn.S139167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Mortensen, M. M., Høyer, S., Lynnerup, A.-S., Ørntoft, T. F., Sørensen, K. D., Borre, M., & Dyrskjøt, L. (2015). Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Scientific Reports, 5, 16018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figures were drawn by BioRender (biorender.com) and Figdraw (Figdraw.com).

Author information

Authors and Affiliations

Authors

Contributions

Milad Ashrafizadeh and Wei Zhang contributed in writing first draft of paper and drawing figures. Yu Tian performed bioinforamtics analysis. Gautam Sethi and Xianbin Zhang developed idea, collected papers and edited paper. Aiming Qiu revised the paper, improved the quality and language, reduced the plagiarism, replaced and drew new and high quality figures and added the tables.

Corresponding authors

Correspondence to Gautam Sethi, Xianbin Zhang or Aiming Qiu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The drug resistance development in prostate cancer (PCa) has resulted in therapy failure in patients.

• Abnormal biological mechanisms including apoptosis, autophagy, and EMT mediate chemoresistance.

• Dysregulation of molecular pathways induces both chemoresistance and radioresistance in PCa.

• Pharmacological compounds and nanostructures increase therapy sensitivity.

• Immune evasion compromises function of immunotherapy in PCa suppression.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashrafizadeh, M., Zhang, W., Tian, Y. et al. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 43, 229–260 (2024). https://doi.org/10.1007/s10555-024-10168-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-024-10168-9

Keywords

Navigation