Skip to main content
Log in

Preimplantation genetic testing in the current era, a review

  • Review
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Background

Preimplantation genetic testing (PGT), also referred to as preimplantation genetic diagnosis (PGD), is an advanced reproductive technology used during in vitro fertilization (IVF) cycles to identify genetic abnormalities in embryos prior to their implantation. PGT is used to screen embryos for chromosomal abnormalities, monogenic disorders, and structural rearrangements.

Development of PGT

Over the past few decades, PGT has undergone tremendous development, resulting in three primary forms: PGT-A, PGT-M, and PGT-SR. PGT-A is utilized for screening embryos for aneuploidies, PGT-M is used to detect disorders caused by a single gene, and PGT-SR is used to detect chromosomal abnormalities caused by structural rearrangements in the genome.

Purpose of Review

In this review, we thoroughly summarized and reviewed PGT and discussed its pros and cons down to the minutest aspects. Additionally, recent studies that highlight the advancements of PGT in the current era, including their future perspectives, were reviewed.

Conclusions

This comprehensive review aims to provide new insights into the understanding of techniques used in PGT, thereby contributing to the field of reproductive genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. Niederberger C, Pellicer A, Cohen J, Gardner DK, Palermo GD, O’Neill CL, Chow S, Rosenwaks Z, Cobo A, Swain JE et al (2018) Forty years of IVF. Fertil Steril 110:185–324

    Article  PubMed  Google Scholar 

  2. Kupka MS, Ferraretti AP, De Mouzon J, Erb K, D’Hooghe T, Castilla JA, Calhaz-Jorge C, De Geyter C, Goossens V, Strohmer H et al (2014) Assisted reproductive technology in Europe, 2010: results generated from European registers by ESHRE. Hum Reprod 29:2099–2113

    Article  CAS  PubMed  Google Scholar 

  3. Parikh FR, Athalye AS, Naik NJ, Naik DJ, Sanap RR, Madon PF (2018) Preimplantation genetic testing: its evolution, where are we today? J Hum Reprod Sci 11:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Handyside AH, Kontogianni EH, Hardy K, Winston RML (1990) Pregnancies from biopsied human preimplantation embryos sexed by Y-Specific DNA amplification. Nature 344:768–770

    Article  CAS  PubMed  Google Scholar 

  5. Kuliev A, Rechitsky S (2017) Preimplantation genetic testing: current challenges and future prospects. Expert Rev Mol Diagn 17:1071–1088

    Article  CAS  PubMed  Google Scholar 

  6. Sullivan-Pyke C, Dokras A (2018) Preimplantation genetic screening and preimplantation genetic diagnosis. Obstet Gynecol Clin 45:113–125

    Article  Google Scholar 

  7. Takeuchi K (2021) Pre-implantation genetic testing: past, present. Future Reprod Med Biol 20:27–40

    Article  PubMed  Google Scholar 

  8. Rock J, Menkin MF (1944) In vitro fertilization and cleavage of human ovarian eggs. Science 100:105–107. https://doi.org/10.1126/SCIENCE.100.2588.105/ASSET/3C2993FE-8B22-4BBE-AF57-1F924FD2B2C7/ASSETS/SCIENCE.100.2588.105.FP.PNG

    Article  CAS  PubMed  Google Scholar 

  9. Shettles LB (1955) Morula stage of human ovum developed in vitro. Fertil Steril 6:287–289. https://doi.org/10.1016/S0015-0282(16)32040-4

    Article  CAS  PubMed  Google Scholar 

  10. Steptoe PC, Edwards RG (1976) Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet 307:880–882. https://doi.org/10.1016/S0140-6736(76)92096-1

    Article  Google Scholar 

  11. Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 312:366

    Article  Google Scholar 

  12. Zeilmaker GH, Alberda AT, van Gent I, Rijkmans CM, Drogendijk AC (1984) Two pregnancies following transfer of intact frozen-thawed embryos. Fertil Steril 42:293–296. https://doi.org/10.1016/S0015-0282(16)48029-5

    Article  CAS  PubMed  Google Scholar 

  13. Blakeslee S (1984) Infertile woman has baby through embryo transfer. The New York Times

    Google Scholar 

  14. Chen C (1986) Pregnancy after human oocyte cryopreservatioN. Lancet 327:884–886. https://doi.org/10.1016/S0140-6736(86)90989-X

    Article  Google Scholar 

  15. Verlinsky Y, Ginsberg N, Lifchez A, Valle J, Moise J, Strom CM (1990) Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod 5:826–829. https://doi.org/10.1093/OXFORDJOURNALS.HUMREP.A137192

    Article  CAS  PubMed  Google Scholar 

  16. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340:17–18

    Article  CAS  PubMed  Google Scholar 

  17. Griffin DK, Wilton LJ, Handyside AH, Atkinson GHG, Winston RML, Delhanty JDA (1993) Diagnosis of sex in preimplantation embryos by fluorescent in situ hybridisation. BMJ 306:1382. https://doi.org/10.1136/BMJ.306.6889.1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wells D, Sherlock JK, Handyside AH, Delhanty JDA (1999) Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res 27:1214–1218. https://doi.org/10.1093/NAR/27.4.1214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Voullaire L, Wilton L, Slater H, Williamson R (1999) Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat Diagnosis Publ Affil With Int Soc Prenat Diagnosis 19:846–851

    CAS  Google Scholar 

  20. Verlinsky Y, Rechitsky S, Schoolcraft W, Strom C, Kuliev A (2001) Preimplantation diagnosis for fanconi anemia combined with HLA matching. JAMA 285:3130–3133. https://doi.org/10.1001/JAMA.285.24.3130

    Article  CAS  PubMed  Google Scholar 

  21. Mastenbroek S, Twisk M, van Echten-Arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR, Vogel NEA, Arts EGJM, de Vries JWA, Bossuyt PM et al (2007) In vitro fertilization with preimplantation genetic screening. N Engl J Med 357:9–17. https://doi.org/10.1056/NEJMOA067744

    Article  CAS  PubMed  Google Scholar 

  22. Wells D, Alfarawati S, Fragouli E (2008) Use of comprehensive chromosomal screening for embryo assessment: microarrays and CGH. Mol Hum Reprod 14:703–710. https://doi.org/10.1093/MOLEHR/GAN062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Handyside AH, Harton GL, Mariani B, Thornhill AR, Affara N, Shaw MA, Griffin DK (2010) Karyomapping: a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes. J Med Genet 47:651–658. https://doi.org/10.1136/JMG.2009.069971

    Article  PubMed  Google Scholar 

  24. Alfarawati S, Fragouli E, Colls P, Wells D (2011) First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum Reprod 26:1560–1574. https://doi.org/10.1093/HUMREP/DER068

    Article  CAS  PubMed  Google Scholar 

  25. Yin XY, Tan K, Vajta G, Jiang H, Tan YQ, Zhang CL, Chen F, Chen SP, Zhang CS, Pan XY et al (2013) Massively parallel sequencing for chromosomal abnormality testing in trophectoderm cells of human blastocysts. Biol Reprod. https://doi.org/10.1095/BIOLREPROD.112.106211

    Article  PubMed  Google Scholar 

  26. Penzias A, Bendikson K, Butts S, Coutifaris C, Fossum G, Falcone T, Gitlin S, Gracia C, Hansen K, La Barbera A et al (2017) Guidance on the limits to the number of embryos to transfer: a committee opinion. Fertil Steril 107:901–903. https://doi.org/10.1016/J.FERTNSTERT.2017.02.107

    Article  Google Scholar 

  27. Friedenthal J, Maxwell SM, Munné S, Kramer Y, McCulloh DH, McCaffrey C, Grifo JA (2018) Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil Steril 109:627–632

    Article  CAS  PubMed  Google Scholar 

  28. Spinella F, Fiorentino F, Biricik A, Bono S, Ruberti A, Cotroneo E, Baldi M, Cursio E, Minasi MG, Greco E (2018) Extent of chromosomal mosaicism influences the clinical outcome of in vitro fertilization treatments. Fertil Steril 109:77–83. https://doi.org/10.1016/J.FERTNSTERT.2017.09.025

    Article  PubMed  Google Scholar 

  29. Sha QQ, Zheng W, Wu YW, Li S, Guo L, Zhang S, Lin G, Ou XH, Fan HY (2020) Dynamics and clinical relevance of maternal MRNA clearance during the oocyte-to-embryo transition in humans. J Nat Commun. https://doi.org/10.1038/S41467-020-18680-6

    Article  Google Scholar 

  30. Wang W, Zhao M, Zuo H, Zhang J, Liu B, Chen F, Ji P, Liu G, Gao S, Wei S et al (2023) Evaluate the developmental competence of human 8-cell embryos by single-cell RNA sequencing. Reprod Fertil 4(2):e220119. https://doi.org/10.1530/RAF-22-0119

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gordon JW, Talansky BE (1986) Assisted fertilization by zona drilling: a mouse model for correction of oligospermia. J Exp Zool 239:347–354

    Article  CAS  PubMed  Google Scholar 

  32. Cohen J, Malter H, Fehilly C, Wright G, Elsner C, Kort H, Massey J (1988) Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration. Lancet 332:162

    Article  Google Scholar 

  33. Palermo GD, Neri QV, Rosenwaks Z (2015) To ICSI or not to ICSI. In Proc Seminars Reprod Med 33:92–102

    Article  Google Scholar 

  34. Jain T, Gupta RS (2007) Trends in the use of intracytoplasmic sperm injection in the United States. N Engl J Med 357:251–257

    Article  CAS  PubMed  Google Scholar 

  35. Van Rumste MME, Evers JLH, Farquhar CM (2004) ICSI versus conventional techniques for oocyte insemination during IVF in patients with non-male factor subfertility: a cochrane review. Hum Reprod 19:223–227

    Article  PubMed  Google Scholar 

  36. Dyer S, Chambers GM, de Mouzon J, Nygren K-G, Zegers-Hochschild F, Mansour R, Ishihara O, Banker M, Adamson GD (2016) International committee for monitoring assisted reproductive technologies world report: assisted reproductive technology 2008, 2009 and 2010. Hum Reprod 31:1588–1609

    Article  CAS  PubMed  Google Scholar 

  37. Boulet SL, Mehta A, Kissin DM, Warner L, Kawwass JF, Jamieson DJ (2015) Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection. JAMA 313:255–263

    Article  PubMed  Google Scholar 

  38. Merchant R, Gandhi G, Allahbadia GN (2011) In vitro fertilization/intracytoplasmic sperm injection for male infertility. Indian J Urol IJU J Urol Soc 27:121

    Article  Google Scholar 

  39. Chandra A, Copen CE, Stephen EH 2014 Infertility service use in the United States: data from the national survey of family growth, 1982–2010, US Department of Health and Human Services, Centers for Disease Control and~…

  40. Beall SA, DeCherney A (2012) History and challenges surrounding ovarian stimulation in the treatment of infertility. Fertil Steril 97:795–801

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Sauer M (2006) V in vitro fertilization (IVF): a review of 3 decades of clinical innovation and technological advancement. Ther Clin Risk Manag 2:355–364

    Article  PubMed  PubMed Central  Google Scholar 

  42. De Rycke M, Goossens V, Kokkali G, Meijer-Hoogeveen M, Coonen E, Moutou C (2017) ESHRE PGD consortium data collection XIV–XV: cycles from january 2011 to december 2012 with pregnancy follow-up to october 2013. Hum Reprod 32:1974–1994

    Article  PubMed  Google Scholar 

  43. Montag M, der Ven K, Rösing B, der Ven H (2009) Polar body biopsy: a viable alternative to preimplantation genetic diagnosis and screening. Reprod Biomed Online 18:6–11

    Article  PubMed  Google Scholar 

  44. Levin I, Almog B, Shwartz T, Gold V, Ben-Yosef D, Shaubi M, Amit A, Malcov M (2012) Effects of laser polar-body biopsy on embryo quality. Fertil Steril 97:1085–1088

    Article  PubMed  Google Scholar 

  45. Fragouli E, Munne S, Wells D (2019) The cytogenetic constitution of human blastocysts: insights from comprehensive chromosome screening strategies. Hum Reprod Update 25:15–33

    Article  CAS  PubMed  Google Scholar 

  46. Piyamongkol W, Bermúdez MG, Harper JC, Wells D (2003) Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell pcr: implications for preimplantation genetic diagnosis. Mol Hum Reprod 9:411–420

    Article  CAS  PubMed  Google Scholar 

  47. Goolam M, Scialdone A, Graham SJL, Macaulay IC, Jedrusik A, Hupalowska A, Voet T, Marioni JC, Zernicka-Goetz M (2016) Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165:61–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cohen J, Wells D, Munné S (2007) Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril 87:496–503

    Article  PubMed  Google Scholar 

  49. Kirkegaard K, Juhl Hindkjaer J, Ingerslev HJ (2012) Human embryonic development after blastomere removal: a time-lapse analysis. Hum Reprod 27:97–105

    Article  PubMed  Google Scholar 

  50. Bar-El L, Kalma Y, Malcov M, Schwartz T, Raviv S, Cohen T, Amir H, Cohen Y, Reches A, Amit A et al (2016) Blastomere biopsy for PGD delays embryo compaction and blastulation: a time-lapse microscopic analysis. J Assist Reprod Genet 33:1449–1457

    Article  PubMed  PubMed Central  Google Scholar 

  51. Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR (2013) Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril 100:624–630

    Article  PubMed  Google Scholar 

  52. Sacks GC, Altarescu G, Guedalia J, Varshaver I, Gilboa T, Levy-Lahad E, Eldar-Geva T (2016) Developmental neuropsychological assessment of 4-to 5-year-old children born following preimplantation genetic diagnosis (PGD): a pilot study. Child Neuropsychol 22:458–471

    Article  PubMed  Google Scholar 

  53. Kuiper D, Bennema A, la Bastide-van Gemert S, Seggers J, Schendelaar P, Mastenbroek S, Hoek A, Heineman MJ, Roseboom TJ, Kok JH et al (2018) Developmental outcome of 9-year-old children born after PGS: follow-up of a randomized trial. Hum Reprod 33:147–155

    Article  PubMed  Google Scholar 

  54. Yu Y, Wu J, Fan Y, Lv Z, Guo X, Zhao C, Zhou R, Zhang Z, Wang F, Xiao M et al (2009) Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol Cell Proteomics 8:1490–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao H-C, Zhao Y, Li M, Yan J, Li L, Li R, Liu P, Yu Y, Qiao J (2013) Aberrant epigenetic modification in murine brain tissues of offspring from preimplantation genetic diagnosis blastomere biopsies. Biol Reprod 89:111–117

    Article  Google Scholar 

  56. Kokkali G, Vrettou C, Traeger-Synodinos J, Jones GM, Cram DS, Stavrou D, Trounson AO, Kanavakis E, Pantos K (2005) Birth of a healthy infant following trophectoderm biopsy from blastocysts for PGD of $β$-thalassaemia major: case report. Hum Reprod 20:1855–1859

    Article  CAS  PubMed  Google Scholar 

  57. Kokkali G, Traeger-Synodinos J, Vrettou C, Stavrou D, Jones GM, Cram DS, Makrakis E, Trounson AO, Kanavakis E, Pantos K (2007) Blastocyst biopsy versus cleavage stage biopsy and blastocyst transfer for preimplantation genetic diagnosis of $β$-thalassaemia: a pilot study. Hum Reprod 22:1443–1449

    Article  CAS  PubMed  Google Scholar 

  58. Chang LJ, Huang CC, Tsai YY, Hung CC, Fang MY, Lin YC, Su YN, Chen SU, Yang YS (2013) Blastocyst biopsy and vitrification are effective for preimplantation genetic diagnosis of monogenic diseases. Hum Reprod 28:1435–1444

    Article  PubMed  Google Scholar 

  59. Maxwell SM, Colls P, Hodes-Wertz B, McCulloh DH, McCaffrey C, Wells D, Munné S, Grifo JA (2016) Why do euploid embryos miscarry? A case-control study comparing the rate of aneuploidy within presumed euploid embryos that resulted in miscarriage or live birth using next-generation sequencing. Fertil Steril 106:1414–1419

    Article  CAS  PubMed  Google Scholar 

  60. Fragouli E, Alfarawati S, Spath K, Babariya D, Tarozzi N, Borini A, Wells D (2017) Analysis of implantation and ongoing pregnancy rates following the transfer of mosaic diploid-aneuploid blastocysts. Hum Genet 136:805–819

    Article  CAS  PubMed  Google Scholar 

  61. McArthur SJ, Leigh D, Marshall JT, Gee AJ, De Boer KA, Jansen RPS (2008) Blastocyst trophectoderm biopsy and preimplantation genetic diagnosis for familial monogenic disorders and chromosomal translocations. Prenat Diagnosis Publ Affil With Int Soc Prenat Diagnosis 28:434–442

    CAS  Google Scholar 

  62. Scott RT Jr, Upham KM, Forman EJ, Hong KH, Scott KL, Taylor D, Tao X, Treff NR (2013) Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril 100:697–703

    Article  PubMed  Google Scholar 

  63. Glujovsky D, Retamar AMQ, Sedo CRA et al (2022) Cleavage‐stage versus blastocyst‐stage embryo transfer in assisted reproductive technology. Cochrane Database Syst Rev 5:CD002118. https://doi.org/10.1002/14651858.CD002118.pub6

    Article  PubMed  Google Scholar 

  64. Neal SA, Franasiak JM, Forman EJ, Werner MD, Morin SJ, Tao X, Treff NR, Scott RT Jr (2017) High relative deoxyribonucleic acid content of trophectoderm biopsy adversely affects pregnancy outcomes. Fertil Steril 107:731–736

    Article  CAS  PubMed  Google Scholar 

  65. Eskew AM, Jungheim ES (2017) A history of developments to improve in vitro fertilization. Mo Med 114:156

    PubMed  PubMed Central  Google Scholar 

  66. Dupont C, Sifer C (2012) A Review of Outcome Data concerning Children Born following Assisted Reproductive Technologies. ISRN Obstet Gynecol 2012:405382. https://doi.org/10.5402/2012/405382

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lu Y, Wang N, Jin F (2013) Long-term follow-up of children conceived through assisted reproductive technology. J zhejiang Univ Sci B 14:359–371

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sandin S, Nygren K-G, Iliadou A, Hultman CM, Reichenberg A (2013) Autism and mental retardation among offspring born after in vitro fertilization. JAMA 310:75–84

    Article  CAS  PubMed  Google Scholar 

  69. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S (2014) A Systematic review and meta-analysis of dna methylation levels and imprinting disorders in children conceived by ivf/icsi compared with children conceived spontaneously. Hum Reprod Update 20:840–852

    Article  CAS  PubMed  Google Scholar 

  70. Owen CM, Segars JH (2009) Imprinting disorders and assisted reproductive technology. In Proc Seminars Reprod Med 27:417–428

    Article  CAS  Google Scholar 

  71. de Waal E, Mak W, Calhoun S, Stein P, Ord T, Krapp C, Coutifaris C, Schultz RM, Bartolomei MS (2014) In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol Reprod 90:21–22

    Google Scholar 

  72. Kettner LO, Henriksen TB, Bay B, Ramlau-Hansen CH, Kesmodel US (2015) Assisted reproductive technology and somatic morbidity in childhood: a systematic review. Fertil Steril 103:707–719

    Article  PubMed  Google Scholar 

  73. Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, de Waal HA (2008) Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab 93:1682–1688

    Article  CAS  PubMed  Google Scholar 

  74. Zhang Y, Cui Y, Zhou Z, Sha J, Li Y, Liu J (2010) Altered global gene expressions of human placentae subjected to assisted reproductive technology treatments. Placenta 31:251–258

    Article  PubMed  Google Scholar 

  75. Xia X, Jiang S-W, Zhang Y, Hu Y, Yi H, Liu J, Zhao N, Chen J, Gao L, Cui Y et al (2019) Serum levels of trace elements in children born after assisted reproductive technology. Clin Chim Acta 495:664–669

    Article  CAS  PubMed  Google Scholar 

  76. Ludwig AK, Katalinic A, Thyen U, Sutcliffe AG, Diedrich K, Ludwig M (2009) Physical health at 5.5 years of age of term-born singletons after intracytoplasmic sperm injection: results of a prospective, controlled, single-blinded study. Fertil Steril 91:115–124

    Article  PubMed  Google Scholar 

  77. Wainstock T, Sheiner E, Yoles I, Sergienko R, Landau D, Harlev A (2019) Fertility treatments and offspring pediatric infectious morbidities: results of a population-based cohort with a median follow-up of 10 years. Fertil Steril 112:1129–1135

    Article  PubMed  Google Scholar 

  78. Sutcliffe AG, Melhuish E, Barnes J, Gardiner J (2014) Health and development of children born after assisted reproductive technology and sub-fertility compared to naturally conceived children: data from a national study. Pediatr Rep 6:5118

    Article  PubMed  PubMed Central  Google Scholar 

  79. Waynforth D (2018) Effects of conception using assisted reproductive technologies on infant health and development: an evolutionary perspective and analysis using UK millennium cohort data. Yale J Biol Med 91:225–235

    PubMed  PubMed Central  Google Scholar 

  80. Hwang SS, Dukhovny D, Gopal D, Cabral H, Missmer S, Diop H, Declercq E, Stern JE (2018) Health of infants after ART-treated, subfertile, and fertile deliveries. Pediatrics 142(2):e20174069. https://doi.org/10.1542/peds.2017-4069

    Article  PubMed  Google Scholar 

  81. Mitter VR, Håberg SE, Magnus MC (2022) Early childhood respiratory tract infections according to parental subfertility and conception by assisted reproductive technologies. Hum Reprod 37:2113–2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Weng S-S, Huang Y-T, Huang Y-T, Li Y-P, Chien L-Y (2022) Assisted reproductive technology and risk of childhood cancers. JAMA Netw open 5:e2230157–e2230157

    Article  PubMed  PubMed Central  Google Scholar 

  83. Bromer JG, Ata B, Seli M, Lockwood CJ, Seli E (2011) Preterm deliveries that result from multiple pregnancies associated with assisted reproductive technologies in the USA: a cost analysis. Curr Opin Obstet Gynecol 23:168–173

    Article  PubMed  Google Scholar 

  84. Murray SR, Norman JE (2014) Multiple pregnancies following assisted reproductive technologies–a happy consequence or double trouble? In Proc Seminars Fetal Neonatal Med 19:222–227

    Article  CAS  Google Scholar 

  85. Hill GA, Freeman M, Bastias MC, Rogers BJ, Herbert CM III, Osteen KG, Wentz AC (1989) The Influence of oocyte maturity and embryo quality on pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertil Steril 52:801–806

    Article  CAS  PubMed  Google Scholar 

  86. Gardner DK, Schoolcraft WB (1999) Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol 11:307–311. https://doi.org/10.1097/00001703-199906000-00013

    Article  CAS  PubMed  Google Scholar 

  87. Capalbo A, Rienzi L, Cimadomo D, Maggiulli R, Elliott T, Wright G, Nagy ZP, Ubaldi FM (2014) Correlation between standard blastocyst morphology, euploidy and implantation: an observational study in two centers involving 956 screened blastocysts. Hum Reprod 29:1173–1181

    Article  PubMed  Google Scholar 

  88. Allan S, Balaban B, Banker M et al (2019) International Federation of Fertility Societies’ Surveillance (IFFS) 2019: Global Trends in Reproductive Policy and Practice, 8th Edition. Glob Reprod Heal 4:1–138. https://doi.org/10.1097/GRH.0000000000000029

    Article  Google Scholar 

  89. Viotti M (2020) Preimplantation genetic testing for chromosomal abnormalities: aneuploidy, mosaicism, and structural rearrangements. Genes (Basel) 11:602

    Article  CAS  PubMed  Google Scholar 

  90. Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, De Mouzon J, Sokol R, Rienzi L, Sunde A, Schmidt L, Cooke ID et al (2017) The international glossary on infertility and fertility care, 2017. Hum Reprod 32:1786–1801

    Article  PubMed  PubMed Central  Google Scholar 

  91. Laurie AD, Hill AM, Harraway JR, Fellowes AP, Phillipson GT, Benny PS, Smith MP, George PM (2010) Preimplantation genetic diagnosis for hemophilia a using indirect linkage analysis and direct genotyping approaches. J Thromb Haemost 8:783–789

    Article  CAS  PubMed  Google Scholar 

  92. Treff NR, Fedick A, Tao X, Devkota B, Taylor D, Scott RT Jr (2013) Evaluation of targeted next-generation sequencing-based preimplantation genetic diagnosis of monogenic disease. Fertil Steril 99:1377–1384

    Article  CAS  PubMed  Google Scholar 

  93. Natesan SA, Bladon AJ, Coskun S, Qubbaj W, Prates R, Munne S, Coonen E, Dreesen JCFM, Stevens SJC, Paulussen ADC et al (2014) Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med 16:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Esteki MZ, Dimitriadou E, Mateiu L, Melotte C, der Aa N, Kumar P, Das R, Theunis K, Cheng J, Legius E et al (2015) Concurrent whole-genome haplotyping and copy-number profiling of single cells. Am J Hum Genet 96:894–912

    Article  Google Scholar 

  95. Backenroth D, Zahdeh F, Kling Y, Peretz A, Rosen T, Kort D, Zeligson S, Dror T, Kirshberg S, Burak E et al (2019) Haploseek: a 24-hour all-in-one method for preimplantation genetic diagnosis (PGD) of monogenic disease and aneuploidy. Genet Med 21:1390–1399

    Article  CAS  PubMed  Google Scholar 

  96. Masset H, Zamani Esteki M, Dimitriadou E, Dreesen J, Debrock S, Derhaag J, Derks K, Destouni A, Drüsedau M, Meekels J et al (2019) Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing. Hum Reprod 34:1608–1619

    Article  CAS  PubMed  Google Scholar 

  97. Carvalho F, Coonen E, Goossens V, Kokkali G, Rubio C, Meijer-Hoogeveen M, Moutou C, Vermeulen N, De Rycke M, Committee EPGTCS (2020) ESHRE PGT consortium good practice recommendations for the organisation of PGT. Hum. Reprod. open 2020:hoaa021

    Article  PubMed  PubMed Central  Google Scholar 

  98. Kokkali G, Coticchio G, Bronet F, Celebi C, Cimadomo D, Goossens V, Liss J, Nunes S et al (2020) ESHRE PGT consortium and SIG embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum Reprod open 2020:hoaa020

    Article  PubMed  PubMed Central  Google Scholar 

  99. Carvalho F, Moutou C, Dimitriadou E, Dreesen J, Giménez C, Goossens V, Kakourou G, Vermeulen N, Zuccarello D, Group EPMW et al (2020) ESHRE PGT consortium good practice recommendations for the detection of monogenic disorders. Hum Reprod open 2020:hoaa018

    Article  PubMed  PubMed Central  Google Scholar 

  100. Coonen E, Rubio C, Christopikou D, Dimitriadou E, Gontar J, Goossens V, Maurer M, Spinella F, Vermeulen N, Group EPSAW et al (2020) ESHRE PGT consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum Reprod open 2020:hoaa017

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rodrigo L, Mateu E, Mercader A et al (2014) New Tools for Embryo Selection: Comprehensive Chromosome Screening by Array Comparative Genomic Hybridization. BioMed Res Int 2014:517125. https://doi.org/10.1155/2014/517125

    Article  PubMed  PubMed Central  Google Scholar 

  102. Northrop LE, Treff NR, Levy B, Scott R (2010) SNP microarray-based 24 chromosome aneuploidy screening demonstrates that cleavage-stage fish poorly predicts aneuploidy in embryos that develop to morphologically normal blastocysts. MHR Basic Sci Reprod Med 16:590–600

    Article  CAS  Google Scholar 

  103. Treff NR, Tao X, Ferry KM, Su J, Taylor D, Scott RT Jr (2012) Development and validation of an accurate quantitative real-time polymerase chain reaction-based assay for human blastocyst comprehensive chromosomal aneuploidy screening. Fertil Steril 97:819–824

    Article  CAS  PubMed  Google Scholar 

  104. Huang J, Yan L, Lu S, Zhao N, Xie XS, Qiao J (2016) Validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of blastocysts. Fertil Steril 105:1532–1536

    Article  CAS  PubMed  Google Scholar 

  105. Vera-Rodriguez M, Michel CE, Mercader A, Bladon AJ, Rodrigo L, Kokocinski F, Mateu E, Al-Asmar N, Blesa D, Simón C et al (2016) Distribution patterns of segmental aneuploidies in human blastocysts identified by next-generation sequencing. Fertil Steril 105:1047–1055

    Article  PubMed  Google Scholar 

  106. Fiorentino F, Biricik A, Bono S, Spizzichino L, Cotroneo E, Cottone G, Kokocinski F, Michel C-E (2014) Development and validation of a next-generation sequencing-based protocol for 24-chromosome aneuploidy screening of embryos. Fertil Steril 101:1375–1382

    Article  CAS  PubMed  Google Scholar 

  107. Friedenthal J, Maxwell SM, Tiegs AW, Besser AG, McCaffrey C, Munné S, Noyes N, Grifo JA (2020) Clinical error rates of next generation sequencing and array comparative genomic hybridization with single thawed euploid embryo transfer. Eur J Med Genet 63:103852

    Article  PubMed  Google Scholar 

  108. Chan C, Ryu M, Zwingerman R (2021) Preimplantation genetic testing for aneuploidy: a canadian fertility and andrology society guideline. Reprod Biomed Online 42:105–116

    Article  CAS  PubMed  Google Scholar 

  109. Kimelman D, Pavone ME (2021) Non-invasive prenatal testing in the context of IVF and PGT-A. Best Pract Res Clin Obstet Gynaecol 70:51–62

    Article  PubMed  Google Scholar 

  110. Meng H, Huang S, Diao F, Gao C, Zhang J, Kong L, Gao Y, Jiang C, Qin L, Chen Y, et al. 2023 Rapid and non-invasive diagnostic techniques for embryonic developmental potential: a metabolomic analysis based on raman spectroscopy to identify the pregnancy outcomes of IVF-ET. Front Cell Dev Biol, 11

  111. Kimelman D, Confino R, Confino E, Shulman LP, Zhang JX, Pavone ME (2018) Do patients who achieve pregnancy using IVF-PGS do the recommended genetic diagnostic testing in pregnancy? J Assist Reprod Genet 35:1881–1885

    Article  PubMed  PubMed Central  Google Scholar 

  112. Lee M, Lofgren KT, Thomas A, Lanes A, Goldman R, Ginsburg ES, Hornstein MD (2021) The cost-effectiveness of preimplantation genetic testing for aneuploidy in the united states: an analysis of cost and birth outcomes from 158,665 in vitro fertilization cycles. Am J Obstet Gynecol 225:55-e1

    Article  Google Scholar 

  113. Hawke DC, Watson AJ, Betts DH (2021) Extracellular vesicles, microrna and the preimplantation embryo: non-invasive clues of embryo well-being. Reprod Biomed Online 42:39–54

    Article  CAS  PubMed  Google Scholar 

  114. Battaglia R, Palini S, Vento ME, La Ferlita A, Lo Faro MJ, Caroppo E, Borzi P, Falzone L, Barbagallo D, Ragusa M et al (2019) Identification of extracellular vesicles and characterization of mirna expression profiles in human blastocoel fluid. Sci Rep 9:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G, Kokocinski F, Michel C-E, Minasi MG, Greco E (2014) Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod 29:2802–2813

    Article  CAS  PubMed  Google Scholar 

  116. Rubio C, Navarro-Sánchez L, Garcia-Pascual CM, Ocali O, Cimadomo D, Venier W, Barroso G, Kopcow L, Bahçeci M, Kulmann MIR et al (2020) Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol 223:751-e1

    Article  Google Scholar 

  117. Vyas P, Balakier H, Librach CL (2019) Ultrastructural identification of CD9 positive extracellular vesicles released from human embryos and transported through the zona pellucida. Syst Biol Reprod Med 65:273–280

    Article  PubMed  Google Scholar 

  118. Veraguas D, Aguilera C, Henriquez C, Velasquez AE, Melo-Baez B, Silva-Ibañez P, Castro FO, Rodriguez-Alvarez L (2021) Evaluation of extracellular vesicles and GDNA from culture medium as a possible indicator of developmental competence in human embryos. Zygote 29:138–149

    Article  CAS  PubMed  Google Scholar 

  119. Pallinger E, Bognar Z, Bodis J, Csabai T, Farkas N, Godony K, Varnagy A, Buzas E, Szekeres-Bartho J (2017) A simple and rapid flow cytometry-based assay to identify a competent embryo prior to embryo transfer. Sci Rep 7:39927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McCallie B, Schoolcraft WB, Katz-Jaffe MG (2010) Aberration of blastocyst microrna expression is associated with human infertility. Fertil Steril 93:2374–2382

    Article  CAS  PubMed  Google Scholar 

  121. Capalbo A, Ubaldi FM, Cimadomo D, Noli L, Khalaf Y, Farcomeni A, Ilic D, Rienzi L (2016) MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil Steril 105:225–235

    Article  CAS  PubMed  Google Scholar 

  122. Rosenbluth EM, Shelton DN, Sparks AET, Devor E, Christenson L, Van Voorhis BJ (2013) MicroRNA expression in the human blastocyst. Fertil Steril 99:855–861

    Article  CAS  PubMed  Google Scholar 

  123. Fang F, Li Z, Yu J, Long Y, Zhao Q, Ding X, Wu L, Shao S, Zhang L, Xiang W (2021) MicroRNAs secreted by human embryos could be potential biomarkers for clinical outcomes of assisted reproductive technology. J Adv Res 31:25–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Tomic M, Vrtacnik Bokal E, Stimpfel M (2022) Non-invasive preimplantation genetic testing for aneuploidy and the mystery of genetic material: a review article. Int J Mol Sci 23:3568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Barnes J, Brendel M, Gao VR, Rajendran S, Kim J, Li Q, Malmsten JE, Sierra JT, Zisimopoulos P, Sigaras A et al (2023) A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digit Heal 5:e28–e40

    Article  CAS  Google Scholar 

  126. Wittingham DG (1972) Survival of mouse embryos frozen to-196 degrees and-269 degrees. Science (80-) 178:411–414

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding received from Chongqing Natural Science Foundation [No. cstc2020jcyj-zdxmX0011; cstc2020jcyjmsxmX0012] for the project.

Funding

Funding was received from National Key R&D Program [2023YFC2705602] and Chongqing Natural Science Foundation [No. cstc2020jcyj-zdxmX0011; cstc2020jcyjmsxmX0012] for the project.

Author information

Authors and Affiliations

Authors

Contributions

LD and TY perceived the idea and designed the study. TY, LM, YJ, and CH collected the data, and wrote the manuscript. LD supervised the whole study and helped in refining the writing part. The manuscript was revised and approved by all the authors before submission.

Corresponding author

Correspondence to Daru Lu.

Ethics declarations

Conflict of interest

The authors have declared that there is no conflict of interest regarding publication of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Li, M., Yang, J. et al. Preimplantation genetic testing in the current era, a review. Arch Gynecol Obstet 309, 1787–1799 (2024). https://doi.org/10.1007/s00404-024-07370-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-024-07370-z

Keywords

Navigation