A Minimum Bayes Factor Based Threshold for Activation Likelihood Estimation

Author:

Costa Tommaso,Liloia Donato,Cauda Franco,Fox Peter T.,Mutta Francesca Dalla,Duca Sergio,Manuello Jordi

Abstract

AbstractActivation likelihood estimation (ALE) is among the most used algorithms to perform neuroimaging meta-analysis. Since its first implementation, several thresholding procedures had been proposed, all referred to the frequentist framework, returning a rejection criterion for the null hypothesis according to the critical p-value selected. However, this is not informative in terms of probabilities of the validity of the hypotheses. Here, we describe an innovative thresholding procedure based on the concept of minimum Bayes factor (mBF). The use of the Bayesian framework allows to consider different levels of probability, each of these being equally significant. In order to simplify the translation between the common ALE practice and the proposed approach, we analised six task-fMRI/VBM datasets and determined the mBF values equivalent to the currently recommended frequentist thresholds based on Family Wise Error (FWE). Sensitivity and robustness toward spurious findings were also analyzed. Results showed that the cutoff log10(mBF) = 5 is equivalent to the FWE threshold, often referred as voxel-level threshold, while the cutoff log10(mBF) = 2 is equivalent to the cluster-level FWE (c-FWE) threshold. However, only in the latter case voxels spatially far from the blobs of effect in the c-FWE ALE map survived. Therefore, when using the Bayesian thresholding the cutoff log10(mBF) = 5 should be preferred. However, being in the Bayesian framework, lower values are all equally significant, while suggesting weaker level of force for that hypothesis. Hence, results obtained through less conservative thresholds can be legitimately discussed without losing statistical rigor. The proposed technique adds therefore a powerful tool to the human-brain-mapping field.

Funder

National Institutes of Health

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,General Neuroscience,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3