Monopole and instanton effects in QCD

Author:

Hasegawa Masayasu

Abstract

Abstract We aim to show the effects of the magnetic monopoles and instantons in quantum chromodynamics (QCD) on observables; therefore, we introduce a monopole and anti-monopole pair in the QCD vacuum of a quenched SU(3) by applying the monopole creation operator to the vacuum. We calculate the eigenvalues and eigenvectors of the overlap Dirac operator that preserves the exact chiral symmetry in lattice gauge theory using these QCD vacua. We then investigate the effects of magnetic monopoles and instantons. First, we confirm the monopole effects as follows: (i) the monopole creation operator makes the monopoles and anti-monopoles in the QCD vacuum. (ii) A monopole and anti-monopole pair creates an instanton or anti-instanton without changing the structure of the QCD vacuum. (iii) The monopole and anti-monopole pairs change only the scale of the spectrum distribution without affecting the spectra of the Dirac operator by comparing the spectra with random matrix theory. Next, we find the instanton effects by increasing the number density of the instantons and anti-instantons as follows: (iv) the decay constants of the pseudoscalar increase. (v) The values of the chiral condensate, which are defined as negative numbers, decrease. (vi) The light quarks and the pseudoscalar mesons become heavy. The catalytic effect on the charged pion is estimated using the numerical results of the pion decay constant and the pion mass. (vii) The decay width of the charged pion becomes wider than the experimental result, and the lifetime of the charged pion becomes shorter than the experimental result. These are the effects of the monopoles and instantons in QCD.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference102 articles.

1. Millennium Problems, Clay Mathematics Institute, Peterborough, New Hampshire, U.S.A., (2000) http://www.claymath.org/millennium-problems.

2. G. ’t Hooft, Gauge Fields with Unified Weak, Electromagnetic, and Strong Interactions, in proceedings of the 1975 High-Energy Particle Physics Divisional Conference of EPS, Palermo, Italy, 23–28 June 1975, A. Zichichi ed., Ed. Compositori (1976), p. 1225 [PRINT-75-0836] [INSPIRE].

3. S. Mandelstam, Vortices and Quark Confinement in Nonabelian Gauge Theories, Phys. Rept. 23 (1976) 245 [INSPIRE].

4. A.S. Kronfeld, G. Schierholz and U.-J. Wiese, Topology and Dynamics of the Confinement Mechanism, Nucl. Phys. B 293 (1987) 461 [INSPIRE].

5. S. Maedan and T. Suzuki, An Infrared Effective Theory of Quark Confinement Based on Monopole Condensation, Prog. Theor. Phys. 81 (1989) 229 [INSPIRE].

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3