Allometric relationships between primary size measures and sapwood area for six common tree species in snow-dependent ecosystems in the Southwest United States

Author:

Mitra Bhaskar,Papuga Shirley A.,Alexander M. Ross,Swetnam Tyson Lee,Abramson Nate

Abstract

Abstract High-elevation, snow-dependent, semiarid ecosystems across southwestern United States are expected to be vulnerable to climate change, including drought and fire, with implications for various aspects of the water cycle. To that end, much less is known about the dynamics of transpiration, an important component of the water cycle across this region. At the individual-tree scale, transpiration is estimated by scaling mean sap flux density by the hydroactive sapwood area (SA). SA also remains a key factor in effectively scaling individual tree water-use to stand level. SA across large spatial scales is normally established by relating SA of a few trees to primary size measures, e.g., diameter at breast height (DBH), tree height (H), or canopy diameter (CD). Considering the importance of SA in scaling transpiration, the primary objective of this study was therefore to establish six species-specific (aspen, maple, white fir, ponderosa pine, Douglas fir, Englemann spruce) allometric relationships between SA and three primary size measures (DBH, CD, or H) across two high-elevation, snow-dependent, semiarid ecosystems in New Mexico and Arizona. Based on multiple statistical criteria (coefficient of determination, index of agreement, Nash–Sutcliffe efficiency) and ease of measurement in the forest, we identified DBH as the primary independent variable for estimating SA across all sites. Based on group regression analysis, we found allometric relationships to be significantly (p < 0.05) different for the same species (ponderosa pine, Douglas-fir) across different sites. Overall, our allometric relationships provide a valuable database for estimating transpiration at different spatial scales from sap flow data in some of our most vulnerable ecosystems.

Publisher

Springer Science and Business Media LLC

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3