Genome-wide association study reveals candidate genes for traits related to meat quality in Colombian Creole hair sheep

Author:

Revelo Herman AlbertoORCID,López-Alvarez Diana,Palacios Yineth Alexandra,Vergara Oscar David,Yánez Moris Bustamante,Ariza Manuel Fernando,Molina Susan Lorena Castro,Sanchez Yurany Ortiz,Alvarez Luz Ángela

Abstract

AbstractGenome-wide association studies (GWAS) allow identifying genomic regions related to traits of economic importance in animals of zootechnical interest. The objective of this research was to conduct a genome-wide association study on meat quality traits using the Illumina OvineSNPs50 BeadChip array. The animals were sampled in the departments of Córdoba, Cesar, and Valle del Cauca. The genotypes obtained with the Illumina OvineSNP50 BeadChip microarray were analyzed SNP (single-nucleotide polymorphism) data to conduct a GWAS for pH and water-holding capacity (WHC) traits measured after 7 days of maturation, in the Longissimus dorsi (LD) muscle, in 167 Creole hair sheep of 12 months old belonging to Pelibuey (CHSP, n = 60), Ethiopian (CHSE, n = 44), and Sudan (CHSS, n = 63) breeds. The GWAS was done using a mixed linear model (MLMA) and based on the Ovis aries v3.1 genome. The CHSE showed the lowest meat juice release and, consequently, the highest water-holding capacity (WHC = 30.6 ± 0.1), suggesting that this breed has better performance in the meat industry compared with CHSS (WHC = 41.7 ± 0.1) and CHSP (WHC = 36.8 ± 0.1), since there is a relationship between WHC and juiciness. For the character pH, it was not possible to annotate genes related to meat quality, while, for the WHC, they have obtained 11 candidate genes associated (ELOVL2, ARAP2, LOC101102527, SHOC2, AIPL1, CSRNP3, IFRD, KDM8, NANS, DAPK1, IBN2, TPM2). Particularly, ELOVL2, ARAP2, IBN2, and TPM2 genes are involved in muscle contraction and fatty acid composition in sheep. In this study, we generated a baseline for GWAS related to meat quality traits in Colombian Creole hair sheep that can be used for future genomic selection plans.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

National University of Colombia

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Food Animals

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3