lncRNA HOTAIRM1 Activated by HOXA4 Drives HUVEC Proliferation Through Direct Interaction with Protein Partner HSPA5

Author:

Zhou Yu,Wu Qiang,Long Xiangshu,He Youfu,Huang Jing

Abstract

AbstractDespite the substantial progress in deciphering the pathogenesis of atherosclerosis (AS), cardiovascular mortality is still increasing. Therefore, atherosclerotic cardiovascular disease remains a sweeping epidemic that jeopardizes human health. Disentangling the molecular underpinnings of AS is imperative in the molecular cardiology field. Overwhelming evidence has indicated that the recognition of a fascinating class of players, known as long non-coding RNAs (lncRNAs), provides causality for coordinating AS. However, the function and mechanism of HOTAIRM1 are still poorly understood in human umbilical vein endothelial cells (HUVECs) and AS. Herein, we primarily underscored that lncRNA HOTAIRM1 is potentially responsible for AS; as such, it was dramatically up-regulated in HUVECs upon ox-LDL stimulation. Functionally, HOTAIRM1 knockdown attenuated HUVEC proliferation and potentiated apoptosis in the absence and presence of ox‐LDL. Furthermore, HOTAIRM1 was preferentially located in the nuclei of HUVECs. Mechanistically, HOXA4 is directly bound to the HOTAIRM1 promoter and activated its transcription. Of note, a positive feedback signaling between HOXA4 and HOTAIRM1 was determined. Intriguingly, the interplay between HOTAIRM1 and HSPA5 occurred in an RNA-binding protein pattern and a transcription-dependent regulatory manner. In addition, HSPA5 overexpression partially antagonized HUVEC proliferation inhibition of HOTAIRM1 depletion. Taken together, our findings delineate a pivotal functional interaction among HOXA4, HOTAIRM1, and HSPA5 as a novel regulatory circuit for modulating HUVEC proliferation. An in-depth investigation of the HOXA4-HOTAIRM1-HSPA5 axis promises to yield significant breakthroughs in identifying the molecular mechanisms governing AS and developing therapeutic avenues for AS. Graphical Abstract

Funder

Guizhou Provincial Science and Technology Project

Science and Technology fund project of Health and Family Planning Commission of Guizhou province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3