Skip to main content
Log in

Immune landscape and response to oncolytic virus-based immunotherapy

  • Review
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferrucci PF, Pala L, Conforti F, Cocorocchio E. Talimogene laherparepvec (T-VEC): an intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel) 2021; 13(6): 1383

    Article  CAS  PubMed  Google Scholar 

  2. Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, Tanaka M. Intratumoral oncolytic herpes virus G47Δ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med 2022; 28(8): 1630–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiao Q, Song M, Song C, Zhang Y, Wang X, Huang Q, Wang B, Yang P, Zhao S, Li Y, Wang Z, Zhao J. Single-dose vaccination of recombinant chimeric newcastle disease virus (NDV) LaSota vaccine strain expressing infectious bursal disease virus (IBDV) VP2 gene provides full protection against genotype VII NDV and IBDV challenge. Vaccines (Basel) 2021; 9(12): 1483

    Article  CAS  PubMed  Google Scholar 

  4. Vijayakumar G, Palese P, Goff PH. Oncolytic Newcastle disease virus expressing a checkpoint inhibitor as a radioenhancing agent for murine melanoma. EBioMedicine 2019; 49: 96–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang Z, Liu M, Huang Y. Oncolytic therapy and gene therapy for cancer: recent advances in antitumor effects of Newcastle disease virus. Discov Med 2020; 30(159): 39–48

    PubMed  Google Scholar 

  6. Keshavarz M, Nejad ASM, Esghaei M, Bokharaei-Salim F, Dianat-Moghadam H, Keyvani H, Ghaemi A. Oncolytic Newcastle disease virus reduces growth of cervical cancer cell by inducing apoptosis. Saudi J Biol Sci 2020; 27(1): 47–52

    Article  CAS  PubMed  Google Scholar 

  7. Jiffry J, Thavornwatanayong T, Rao D, Fogel EJ, Saytoo D, Nahata R, Guzik H, Chaudhary I, Augustine T, Goel S, Maitra R. Oncolytic reovirus (pelareorep) induces autophagy in KRAS-mutated colorectal cancer. Clin Cancer Res 2021; 27(3): 865–876

    Article  CAS  PubMed  Google Scholar 

  8. Kennedy BE, Murphy JP, Clements DR, Konda P, Holay N, Kim Y, Pathak GP, Giacomantonio MA, Hiani YE, Gujar S. Inhibition of pyruvate dehydrogenase kinase enhances the antitumor efficacy of oncolytic reovirus. Cancer Res 2019; 79(15): 3824–3836

    Article  CAS  PubMed  Google Scholar 

  9. Gebremeskel S, Nelson A, Walker B, Oliphant T, Lobert L, Mahoney D, Johnston B. Natural killer T cell immunotherapy combined with oncolytic vesicular stomatitis virus or reovirus treatments differentially increases survival in mouse models of ovarian and breast cancer metastasis. J Immunother Cancer 2021; 9(3): e002096

    Article  PubMed  PubMed Central  Google Scholar 

  10. Abudoureyimu M, Lai Y, Tian C, Wang T, Wang R, Chu X. Oncolytic adenovirus—a Nova for gene-targeted oncolytic viral therapy in HCC. Front Oncol 2019; 9: 1182

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mahasa KJ, de Pillis L, Ouifki R, Eladdadi A, Maini P, Yoon AR, Yun CO. Mesenchymal stem cells used as carrier cells of oncolytic adenovirus results in enhanced oncolytic virotherapy. Sci Rep 2020; 10(1): 425

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and immunotherapy: advancing cancer treatment by combination. Cancers (Basel) 2020; 12(5): 1295

    Article  CAS  PubMed  Google Scholar 

  13. Matsunaga W, Gotoh A. Adenovirus as a vector and oncolytic virus. Curr Issues Mol Biol 2023; 45(6): 4826–4840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao Y, Liu Z, Li L, Wu J, Zhang H, Zhang H, Lei T, Xu B. Oncolytic adenovirus: prospects for cancer immunotherapy. Front Microbiol 2021; 12: 707290

    Article  PubMed  PubMed Central  Google Scholar 

  15. Blanchette P, Teodoro JG. A renaissance for oncolytic adenoviruses? Viruses 2023; 15(2): 358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cook J, Peng KW, Witzig TE, Broski SM, Villasboas JC, Paludo J, Patnaik M, Rajkumar V, Dispenzieri A, Leung N, Buadi F, Bennani N, Ansell SM, Zhang L, Packiriswamy N, Balakrishnan B, Brunton B, Giers M, Ginos B, Dueck AC, Geyer S, Gertz MA, Warsame R, Go RS, Hayman SR, Dingli D, Kumar S, Bergsagel L, Munoz JL, Gonsalves W, Kourelis T, Muchtar E, Kapoor P, Kyle RA, Lin Y, Siddiqui M, Fonder A, Hobbs M, Hwa L, Naik S, Russell SJ, Lacy MQ. Clinical activity of single-dose systemic oncolytic VSV virotherapy in patients with relapsed refractory T-cell lymphoma. Blood Adv 2022; 6(11): 3268–3279

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hastie E, Grdzelishvili VZ. Vesicular stomatitis virus as a flexible platform for oncolytic virotherapy against cancer. J Gen Virol 2012; 93(Pt 12): 2529–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Felt SA, Grdzelishvili VZ. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98(12): 2895–2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barber GN. Vesicular stomatitis virus as an oncolytic vector. Viral Immunol 2004; 17(4): 516–527

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  20. Diaz RM, Galivo F, Kottke T, Wongthida P, Qiao J, Thompson J, Valdes M, Barber G, Vile RG. Oncolytic immunovirotherapy for melanoma using vesicular stomatitis virus. Cancer Res 2007; 67(6): 2840–2848

    Article  CAS  PubMed  Google Scholar 

  21. Kaufman HL, Kohlhapp FJ, Zloza A. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2016; 15(9): 660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taguchi S, Fukuhara H, Todo T. Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Jpn J Clin Oncol 2019; 49(3): 201–209

    Article  PubMed  Google Scholar 

  23. Guo L, Hu C, Liu Y, Chen X, Song D, Shen R, Liu Z, Jia X, Zhang Q, Gao Y, Deng Z, Zuo T, Hu J, Zhu W, Cai J, Yan G, Liang J, Lin Y. Directed natural evolution generates a next-generation oncolytic virus with a high potency and safety profile. Nat Commun 2023; 14(1): 3410

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Takano G, Esaki S, Goshima F, Enomoto A, Hatano Y, Ozaki H, Watanabe T, Sato Y, Kawakita D, Murakami S, Murata T, Nishiyama Y, Iwasaki S, Kimura H. Oncolytic activity of naturally attenuated herpes-simplex virus HF10 against an immunocompetent model of oral carcinoma. Mol Ther Oncolytics 2020; 20: 220–227

    Article  PubMed  PubMed Central  Google Scholar 

  25. Garmaroudi GA, Karimi F, Naeini LG, Kokabian P, Givtaj N. Therapeutic efficacy of oncolytic viruses in fighting cancer: recent advances and perspective. Oxid Med Cell Longev 2022; 2022: 3142306

    Article  PubMed  PubMed Central  Google Scholar 

  26. Robilotti E, Zeitouni NC, Orloff M. Biosafety and biohazard considerations of HSV-1-based oncolytic viral immunotherapy. Front Mol Biosci 2023; 10: 1178382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Luo H. Development of group B coxsackievirus as an oncolytic virus: opportunities and challenges. Viruses 2021; 13(6): 1082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jayawardena N, Poirier JT, Burga LN, Bostina M. Virus-receptor interactions and virus neutralization: insights for oncolytic virus development. Oncolytic Virother 2020; 9: 1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaurasiya S, Chen NG, Fong Y. Oncolytic viruses and immunity. Curr Opin Immunol 2018; 51: 83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7(1): 117

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jeong SN, Yoo SY. Novel oncolytic virus armed with cancer suicide gene and normal vasculogenic gene for improved antitumor activity. Cancers (Basel) 2020; 12(5): 1070

    Article  CAS  PubMed  Google Scholar 

  32. Chiocca EA, Rabkin SD. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2014; 2(4): 295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gong J, Sachdev E, Mita AC, Mita MM. Clinical development of reovirus for cancer therapy: an oncolytic virus with immunemediated antitumor activity. World J Methodol 2016; 6(1): 25–42

    Article  PubMed  PubMed Central  Google Scholar 

  34. Howells A, Marelli G, Lemoine NR, Wang Y. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol 2017; 7: 195

    Article  PubMed  PubMed Central  Google Scholar 

  35. Herceg Z, Hainaut P. Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Mol Oncol 2007; 1(1): 26–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Martin K, Schreiner J, Zippelius A. Modulation of APC function and anti-tumor immunity by anti-cancer drugs. Front Immunol 2015; 6: 501

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jeong S, Park SH. Co-stimulatory receptors in cancers and their implications for cancer immunotherapy. Immune Netw 2020; 20(1): e3

    Article  PubMed  PubMed Central  Google Scholar 

  38. Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, Triulzi T, Tuccitto A, Tagliabue E, Castelli C, Rivoltini L. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of immunomodulation. Semin Cancer Biol 2017; 43: 74–89

    Article  CAS  PubMed  Google Scholar 

  39. Emami Nejad A, Najafgholian S, Rostami A, Sistani A, Shojaeifar S, Esparvarinha M, Nedaeinia R, Haghjooy Javanmard S, Taherian M, Ahmadlou M, Salehi R, Sadeghi B, Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment. Cancer Cell Int 2021; 21(1): 62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tang T, Huang X, Zhang G, Hong Z, Bai X, Liang T. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy. Signal Transduct Target Ther 2021; 6(1): 72

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tie Y, Tang F, Wei YQ, Wei XW. Immunosuppressive cells in cancer: mechanisms and potential therapeutic targets. J Hematol Oncol 2022; 15(1): 61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduct Target Ther 2020; 5(1): 166

    Article  PubMed  PubMed Central  Google Scholar 

  43. Prasad S, Saha P, Chatterjee B, Chaudhary AA, Lall R, Srivastava AK. Complexity of tumor microenvironment: therapeutic role of curcumin and its metabolites. Nutr Cancer 2023; 75(1): 1–13

    Article  CAS  PubMed  Google Scholar 

  44. Patsoukis N, Wang Q, Strauss L, Boussiotis VA. Revisiting the PD-1 pathway. Sci Adv 2020; 6(38): eabd2712

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  45. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol 2020; 11: 940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Giraldo NA, Sanchez-Salas R, Peske JD, Vano Y, Becht E, Petitprez F, Validire P, Ingels A, Cathelineau X, Fridman WH, Sautès-Fridman C. The clinical role of the TME in solid cancer. Br J Cancer 2019; 120(1): 45–53

    Article  PubMed  Google Scholar 

  47. Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer immune evasion through loss of MHC class I antigen presentation. Front Immunol 2021; 12: 636568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Klement JD, Redd PS, Lu C, Merting AD, Poschel DB, Yang D, Savage NM, Zhou G, Munn DH, Fallon PG, Liu K. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment. Cancer Cell 2023; 41(3): 620–636.e9

    Article  CAS  PubMed  Google Scholar 

  49. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res 2015; 21(4): 687–692

    Article  CAS  PubMed  Google Scholar 

  50. Ban Y, Mai J, Li X, Mitchell-Flack M, Zhang T, Zhang L, Chouchane L, Ferrari M, Shen H, Ma X. Targeting autocrine CCL5-CCR5 axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res 2017; 77(11): 2857–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Melese ES, Franks E, Cederberg RA, Harbourne BT, Shi R, Wadsworth BJ, Collier JL, Halvorsen EC, Johnson F, Luu J, Oh MH, Lam V, Krystal G, Hoover SB, Raffeld M, Simpson RM, Unni AM, Lam WL, Lam S, Abraham N, Bennewith KL, Lockwood WW. CCL5 production in lung cancer cells leads to an altered immune microenvironment and promotes tumor development. OncoImmunology 2021; 11(1): 2010905

    Article  PubMed  PubMed Central  Google Scholar 

  52. O’Garra A, Vieira PL, Vieira P, Goldfeld AE. IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 2004; 114(10): 1372–1378

    Article  PubMed  PubMed Central  Google Scholar 

  53. Holmgaard RB, Zamarin D, Li Y, Gasmi B, Munn DH, Allison JP, Merghoub T, Wolchok JD. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep 2015; 13(2): 412–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ma N, Liu Q, Hou L, Wang Y, Liu Z. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer. Int J Immunopathol Pharmacol 2017; 30(2): 152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology 2017; 222(1): 75–81

    Article  CAS  PubMed  Google Scholar 

  56. Polanczyk MJ, Walker E, Haley D, Guerrouahen BS, Akporiaye ET. Blockade of TGF-β signaling to enhance the antitumor response is accompanied by dysregulation of the functional activity of CD4+CD25+Foxp3+ and CD4+CD25Foxp3+ T cells. J Transl Med 2019; 17(1): 219

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kim SK, Cho SW. The evasion mechanisms of cancer immunity and drug intervention in the tumor microenvironment. Front Pharmacol 2022; 13: 868695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen J, Zhao D, Zhang L, Zhang J, Xiao Y, Wu Q, Wang Y, Zhan Q. Tumor-associated macrophage (TAM)-derived CCL22 induces FAK addiction in esophageal squamous cell carcinoma (ESCC). Cell Mol Immunol 2022; 19(9): 1054–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rapp M, Wintergerst MWM, Kunz WG, Vetter VK, Knott MML, Lisowski D, Haubner S, Moder S, Thaler R, Eiber S, Meyer B, Röhrle N, Piseddu I, Grassmann S, Layritz P, Kühnemuth B, Stutte S, Bourquin C, von Andrian UH, Endres S, Anz D. CCL22 controls immunity by promoting regulatory T cell communication with dendritic cells in lymph nodes. J Exp Med 2019; 216(5): 1170–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Balta E, Wabnitz GH, Samstag Y. Hijacked immune cells in the tumor microenvironment: molecular mechanisms of immunosuppression and cues to improve T cell-based immunotherapy of solid tumors. Int J Mol Sci 2021; 22(11): 5736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol 2020; 20(11): 651–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kartikasari AER, Prakash MD, Cox M, Wilson K, Boer JC, Cauchi JA, Plebanski M. Therapeutic cancer vaccines—T cell responses and epigenetic modulation. Front Immunol 2019; 9: 3109

    Article  PubMed  PubMed Central  Google Scholar 

  63. Morse MA, Gwin WR3rd, Mitchell DA. Vaccine therapies for cancer: then and now. Target Oncol 2021; 16(2): 121–152

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J 2021; 11(4): 69

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  65. To V, Evtimov VJ, Jenkin G, Pupovac A, Trounson AO, Boyd RL. CAR-T cell development for cutaneous T cell lymphoma: current limitations and potential treatment strategies. Front Immunol 2022; 13: 968395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shafer P, Kelly LM, Hoyos V. Cancer therapy with TCR-engineered T cells: current strategies, challenges, and prospects. Front Immunol 2022; 13: 835762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: state of the art and perspectives. Sci Adv 2023; 9(7): eadf3700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zappasodi R, Merghoub T, Wolchok JD. Emerging concepts for immune checkpoint blockade-based combination therapies. Cancer Cell 2018; 33(4): 581–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Samnani S, Sachedina F, Gupta M, Guo E, Navani V. Mechanisms and clinical implications in renal carcinoma resistance: narrative review of immune checkpoint inhibitors. Cancer Drug Resist 2023; 6(2): 416–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7(1): 331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou Z, Tao C, Li J, Tang JC, Chan AS, Zhou Y. Chimeric antigen receptor T cells applied to solid tumors. Front Immunol 2022; 13: 984864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol 2019; 234(6): 8509–8521

    Article  CAS  PubMed  Google Scholar 

  73. Liu YT, Sun ZJ. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics 2021; 11(11): 5365–5386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S, Amigorena S, Caux C, Depil S. Cold tumors: a therapeutic challenge for immunotherapy. Front Immunol 2019; 10: 168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 2019; 18(3): 197–218

    Article  CAS  PubMed  Google Scholar 

  76. Duan Q, Zhang H, Zheng J, Zhang L. Turning cold into hot: firing up the tumor microenvironment. Trends Cancer 2020; 6(7): 605–618

    Article  CAS  PubMed  Google Scholar 

  77. Ganesh K. Optimizing immunotherapy for colorectal cancer. Nat Rev Gastroenterol Hepatol 2022; 19(2): 93–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang Y, Liang Y, Xu H, Zhang X, Mao T, Cui J, Yao J, Wang Y, Jiao F, Xiao X, Hu J, Xia Q, Zhang X, Wang X, Sun Y, Fu D, Shen L, Xu X, Xue J, Wang L. Single-cell analysis of pancreatic ductal adenocarcinoma identifies a novel fibroblast subtype associated with poor prognosis but better immunotherapy response. Cell Discov 2021; 7(1): 36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zheng Z, Wieder T, Mauerer B, Schäfer L, Kesselring R, Braumüller H. T cells in colorectal cancer: unravelling the function of different T cell subsets in the tumor microenvironment. Int J Mol Sci 2023; 24(14): 11673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Narayanan S, Vicent S, Ponz-Sarvisé M. PDAC as an immune evasive disease: can 3D model systems aid to tackle this clinical problem? Front Cell Dev Biol 2021; 9: 787249

    Article  PubMed  PubMed Central  Google Scholar 

  81. Dutta R, Khalil R, Mayilsamy K, Green R, Howell M, Bharadwaj S, Mohapatra SS, Mohapatra S. Combination therapy of mithramycin A and immune checkpoint inhibitor for the treatment of colorectal cancer in an orthotopic murine model. Front Immunol 2021; 12: 706133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jeong KY. Challenges to addressing the unmet medical needs for immunotherapy targeting cold colorectal cancer. World J Gastrointest Oncol 2023; 15(2): 215–224

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  83. Liu JL, Yang M, Bai JG, Liu Z, Wang XS. “Cold” colorectal cancer faces a bottleneck in immunotherapy. World J Gastrointest Oncol 2023; 15(2): 240–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fabian KP, Wolfson B, Hodge JW. From immunogenic cell death to immunogenic modulation: select chemotherapy regimens induce a spectrum of immune-enhancing activities in the tumor microenvironment. Front Oncol 2021; 11: 728018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mihm S. Danger-associated molecular patterns (DAMPs): molecular triggers for sterile inflammation in the liver. Int J Mol Sci 2018; 19(10): 3104

    Article  PubMed  PubMed Central  Google Scholar 

  86. Fucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, Zhao L, Spisek R, Kroemer G, Galluzzi L. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis 2020; 11(11): 1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Guo ZS, Liu Z, Bartlett DL. Oncolytic immunotherapy: dying the right way is a key to eliciting potent antitumor immunity. Front Oncol 2014; 4: 74

    Article  PubMed  PubMed Central  Google Scholar 

  88. Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev 2017; 280(1): 126–148

    Article  CAS  PubMed  Google Scholar 

  89. Asadzadeh Z, Safarzadeh E, Safaei S, Baradaran A, Mohammadi A, Hajiasgharzadeh K, Derakhshani A, Argentiero A, Silvestris N, Baradaran B. Current approaches for combination therapy of cancer: the role of immunogenic cell death. Cancers (Basel) 2020; 12(4): 1047

    Article  CAS  PubMed  Google Scholar 

  90. Ramírez-Labrada A, Pesini C, Santiago L, Hidalgo S, Calvo-Pérez A, Oñate C, Andrés-Tovar A, Garzón-Tituaña M, Uranga-Murillo I, Arias MA, Galvez EM, Pardo J. All about (NK cell-mediated) death in two acts and an unexpected encore: initiation, execution and activation of adaptive immunity. Front Immunol 2022; 13: 896228

    Article  PubMed  PubMed Central  Google Scholar 

  91. Zhu J, Huang X, Yang Y. A critical role for type I IFN-dependent NK cell activation in innate immune elimination of adenoviral vectors in vivo. Mol Ther 2008; 16(7): 1300–1307

    Article  CAS  PubMed  Google Scholar 

  92. Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S, Heyndrickx L, Delrue I, Taminau J, Wiernicki B, De Groote P, Garg AD, Leybaert L, Grooten J, Bertrand MJ, Agostinis P, Berx G, Declercq W, Vandenabeele P, Krysko DV. Vaccination with necroptotic cancer cells induces efficient anti-tumor immunity. Cell Rep 2016; 15(2): 274–287

    Article  CAS  PubMed  Google Scholar 

  93. Workenhe ST, Mossman KL. Oncolytic virotherapy and immunogenic cancer cell death: sharpening the sword for improved cancer treatment strategies. Mol Ther 2014; 22(2): 251–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Crupi MJF, Taha Z, Janssen TJA, Petryk J, Boulton S, Alluqmani N, Jirovec A, Kassas O, Khan ST, Vallati S, Lee E, Huang BZ, Huh M, Pikor L, He X, Marius R, Austin B, Duong J, Pelin A, Neault S, Azad T, Breitbach CJ, Stojdl DF, Burgess MF, McComb S, Auer R, Diallo JS, Ilkow CS, Bell JC. Oncolytic virus driven T-cell-based combination immunotherapy platform for colorectal cancer. Front Immunol 2022; 13: 1029269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ye K, Li F, Wang R, Cen T, Liu S, Zhao Z, Li R, Xu L, Zhang G, Xu Z, Deng L, Li L, Wang W, Stepanov A, Wan Y, Guo Y, Li Y, Wang Y, Tian Y, Gabibov AG, Yan Y, Zhang H. An armed oncolytic virus enhances the efficacy of tumor-infiltrating lymphocyte therapy by converting tumors to artificial antigen-presenting cells in situ. Mol Ther 2022; 30(12): 3658–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang G, Kang X, Chen KS, Jehng T, Jones L, Chen J, Huang XF, Chen SY. An engineered oncolytic virus expressing PD-L1 inhibitors activates tumor neoantigen-specific T cell responses. Nat Commun 2020; 11(1): 1395

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  97. Packiriswamy N, Upreti D, Zhou Y, Khan R, Miller A, Diaz RM, Rooney CM, Dispenzieri A, Peng KW, Russell SJ. Oncolytic measles virus therapy enhances tumor antigen-specific T-cell responses in patients with multiple myeloma. Leukemia 2020; 34(12): 3310–3322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ma J, Ramachandran M, Jin C, Quijano-Rubio C, Martikainen M, Yu D, Essand M. Characterization of virus-mediated immunogenic cancer cell death and the consequences for oncolytic virus-based immunotherapy of cancer. Cell Death Dis 2020; 11(1): 48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Ma R, Li Z, Chiocca EA, Caligiuri MA, Yu J. The emerging field of oncolytic virus-based cancer immunotherapy. Trends Cancer 2023; 9(2): 122–139

    Article  CAS  PubMed  Google Scholar 

  100. Niavarani SR, Lawson C, Boudaud M, Simard C, Tai LH. Oncolytic vesicular stomatitis virus-based cellular vaccine improves triple-negative breast cancer outcome by enhancing natural killer and CD8+ T-cell functionality. J Immunother Cancer 2020; 8(1): e000465

    Article  PubMed  PubMed Central  Google Scholar 

  101. Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017; 45: 43–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sadeghzadeh M, Bornehdeli S, Mohahammadrezakhani H, Abolghasemi M, Poursaei E, Asadi M, Zafari V, Aghebati-Maleki L, Shanehbandi D. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020; 254: 117580

    Article  CAS  PubMed  Google Scholar 

  103. Bak SP, Barnkob MS, Bai A, Higham EM, Wittrup KD, Chen J. Differential requirement for CD70 and CD80/CD86 in dendritic cell-mediated activation of tumor-tolerized CD8 T cells. J Immunol 2012; 189(4): 1708–1716

    Article  CAS  PubMed  Google Scholar 

  104. Ke N, Su A, Huang W, Szatmary P, Zhang Z. Regulating the expression of CD80/CD86 on dendritic cells to induce immune tolerance after xeno-islet transplantation. Immunobiology 2016; 221(7): 803–812

    Article  CAS  PubMed  Google Scholar 

  105. Kim HW, Cho SI, Bae S, Kim H, Kim Y, Hwang YI, Kang JS, Lee WJ, Vitamin C. Vitamin C up-regulates expression of CD80, CD86 and MHC class II on dendritic cell line, DC-1 via the activation of p38 MAPK. Immune Netw 2012; 12(6): 277–283

    Article  PubMed  PubMed Central  Google Scholar 

  106. Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcão A, Cruz MT, Neves BM. Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics 2020; 12(2): 158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Marciscano AE, Anandasabapathy N. The role of dendritic cells in cancer and anti-tumor immunity. Semin Immunol 2021; 52: 101481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun 2019; 10(1): 5408

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  109. Ding Z, Li Q, Zhang R, Xie L, Shu Y, Gao S, Wang P, Su X, Qin Y, Wang Y, Fang J, Zhu Z, Xia X, Wei G, Wang H, Qian H, Guo X, Gao Z, Wang Y, Wei Y, Xu Q, Xu H, Yang L. Personalized neoantigen pulsed dendritic cell vaccine for advanced lung cancer. Signal Transduct Target Ther 2021; 6(1): 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res 2017; 27(1): 74–95

    Article  CAS  PubMed  Google Scholar 

  111. Ma Y, Chen M, Jin H, Prabhakar BS, Valyi-Nagy T, He B. An engineered herpesvirus activates dendritic cells and induces protective immunity. Sci Rep 2017; 7(1): 41461

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  112. Pidelaserra-Martí G, Engeland CE. Mechanisms of measles virus oncolytic immunotherapy. Cytokine Growth Factor Rev 2020; 56: 28–38

    Article  PubMed  Google Scholar 

  113. Liu W, Wang X, Feng X, Yu J, Liu X, Jia X, Zhang H, Wu H, Wang C, Wu J, Yu B, Yu X. Oncolytic adenovirus-mediated intratumoral expression of TRAIL and CD40L enhances immunotherapy by modulating the tumor microenvironment in immunocompetent mouse models. Cancer Lett 2022; 535: 215661

    Article  CAS  PubMed  Google Scholar 

  114. Hamilton JA. GM-CSF-dependent inflammatory pathways. Front Immunol 2019; 10: 2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rangsitratkul C, Lawson C, Bernier-Godon F, Niavarani SR, Boudaud M, Rouleau S, Gladu-Corbin AO, Surendran A, Ekindi-Ndongo N, Koti M, Ilkow CS, Richard PO, Tai LH. Intravesical immunotherapy with a GM-CSF armed oncolytic vesicular stomatitis virus improves outcome in bladder cancer. Mol Ther Oncolytics 2022; 24: 507–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kaufman HL, Shalhout SZ, Iodice G. Talimogene laherparepvec: moving from first-in-class to best-in-class. Front Mol Biosci 2022; 9: 834841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ghouse SM, Nguyen HM, Bommareddy PK, Guz-Montgomery K, Saha D. Oncolytic herpes simplex virus encoding IL12 controls triple-negative breast cancer growth and metastasis. Front Oncol 2020; 10: 384

    Article  PubMed  PubMed Central  Google Scholar 

  118. Haghighi-Najafabadi N, Roohvand F, Shams Nosrati MS, Teimoori-Toolabi L, Azadmanesh K. Oncolytic herpes simplex virus type-1 expressing IL-12 efficiently replicates and kills human colorectal cancer cells. Microb Pathog 2021; 160: 105164

    Article  CAS  PubMed  Google Scholar 

  119. Zafar S, Sorsa S, Siurala M, Hemminki O, Havunen R, Cervera-Carrascon V, Santos JM, Wang H, Lieber A, De Gruijl T, Kanerva A, Hemminki A. CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. OncoImmunology 2018; 7(10): e1490856

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang R, Chen J, Wang W, Zhao Z, Wang H, Liu S, Li F, Wan Y, Yin J, Wang R, Li Y, Zhang C, Zhang H, Cao Y. CD40L-armed oncolytic herpes simplex virus suppresses pancreatic ductal adenocarcinoma by facilitating the tumor microenvironment favorable to cytotoxic T cell response in the syngeneic mouse model. J Immunother Cancer 2022; 10(1): e003809

    Article  PubMed  PubMed Central  Google Scholar 

  121. Bommareddy PK, Aspromonte S, Zloza A, Rabkin SD, Kaufman HL. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018; 10(471): eaau0417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, Wurtz A, Dong W, Cai G, Melnick MA, Du VY, Schlessinger J, Goldberg SB, Chiang A, Sanmamed MF, Melero I, Agorreta J, Montuenga LM, Lifton R, Ferrone S, Kavathas P, Rimm DL, Kaech SM, Schalper K, Herbst RS, Politi K. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov 2017; 7(12): 1420–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. D’Alise AM, Leoni G, Cotugno G, Troise F, Langone F, Fichera I, De Lucia M, Avalle L, Vitale R, Leuzzi A, Bignone V, Di Matteo E, Tucci FG, Poli V, Lahm A, Catanese MT, Folgori A, Colloca S, Nicosia A, Scarselli E. Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nat Commun 2019; 10(1): 2688

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  124. Das K, Belnoue E, Rossi M, Hofer T, Danklmaier S, Nolden T, Schreiber LM, Angerer K, Kimpel J, Hoegler S, Spiesschaert B, Kenner L, von Laer D, Elbers K, Derouazi M, Wollmann G. A modular self-adjuvanting cancer vaccine combined with an oncolytic vaccine induces potent antitumor immunity. Nat Commun 2021; 12(1): 5195

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Maimela NR, Liu S, Zhang Y. Fates of CD8+ T cells in tumor microenvironment. Comput Struct Biotechnol J 2018; 17: 1–13

    Article  PubMed  PubMed Central  Google Scholar 

  126. Spranger S, Dai D, Horton B, Gajewski TF. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 2017; 31(5): 711–723.e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. van Vloten JP, Matuszewska K, Minow MAA, Minott JA, Santry LA, Pereira M, Stegelmeier AA, McAusland TM, Klafuric EM, Karimi K, Colasanti J, McFadden DG, Petrik JJ, Bridle BW, Wootton SK. Oncolytic Orf virus licenses NK cells via cDC1 to activate innate and adaptive antitumor mechanisms and extends survival in a murine model of late-stage ovarian cancer. J Immunother Cancer 2022; 10(3): e004335

    Article  PubMed  PubMed Central  Google Scholar 

  128. Cervera-Carrascon V, Quixabeira DCA, Santos JM, Havunen R, Zafar S, Hemminki O, Heiniö C, Munaro E, Siurala M, Sorsa S, Mirtti T, Järvinen P, Mildh M, Nisen H, Rannikko A, Anttila M, Kanerva A, Hemminki A. Tumor microenvironment remodeling by an engineered oncolytic adenovirus results in improved outcome from PD-L1 inhibition. OncoImmunology 2020; 9(1): 1761229

    Article  PubMed  PubMed Central  Google Scholar 

  129. Eckert EC, Nace RA, Tonne JM, Evgin L, Vile RG, Russell SJ. Generation of a tumor-specific chemokine gradient using oncolytic vesicular stomatitis virus encoding CXCL9. Mol Ther Oncolytics 2019; 16: 63–74

    Article  PubMed  PubMed Central  Google Scholar 

  130. Lee JH, Shklovskaya E, Lim SY, Carlino MS, Menzies AM, Stewart A, Pedersen B, Irvine M, Alavi S, Yang JYH, Strbenac D, Saw RPM, Thompson JF, Wilmott JS, Scolyer RA, Long GV, Kefford RF, Rizos H. Transcriptional downregulation of MHC class I and melanoma de-differentiation in resistance to PD-1 inhibition. Nat Commun 2020; 11(1): 1897

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  131. Jugovic P, Hill AM, Tomazin R, Ploegh H, Johnson DC. Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J Virol 1998; 72(6): 5076–5084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Gujar SA, Pan DA, Marcato P, Garant KA, Lee PW. Oncolytic virus-initiated protective immunity against prostate cancer. Mol Ther 2011; 19(4): 797–804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Paul S, Lal G. The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 2017; 8: 1124

    Article  PubMed  PubMed Central  Google Scholar 

  134. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18(2): 85–100

    Article  PubMed  Google Scholar 

  135. Shemesh A, Pickering H, Roybal KT, Lanier LL. Differential IL-12 signaling induces human natural killer cell activating receptor-mediated ligand-specific expansion. J Exp Med 2022; 219(8): e20212434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Souza-Fonseca-Guimaraes F, Young A, Mittal D, Martinet L, Bruedigam C, Takeda K, Andoniou CE, Degli-Esposti MA, Hill GR, Smyth MJ. NK cells require IL-28R for optimal in vivo activity. Proc Natl Acad Sci USA 2015; 112(18): E2376–E2384

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  137. Hamdan F, Ylösmäki E, Chiaro J, Giannoula Y, Long M, Fusciello M, Feola S, Martins B, Feodoroff M, Antignani G, Russo S, Kari O, Lee M, Järvinen P, Nisen H, Kreutzman A, Leusen J, Mustjoki S, McWilliams TG, Grönholm M, Cerullo V. Novel oncolytic adenovirus expressing enhanced cross-hybrid IgGA Fc PD-L1 inhibitor activates multiple immune effector populations leading to enhanced tumor killing in vitro, in vivo and with patient-derived tumor organoids. J Immunother Cancer 2021; 9(8): e003000

    Article  PubMed  PubMed Central  Google Scholar 

  138. Xu B, Tian L, Chen J, Wang J, Ma R, Dong W, Li A, Zhang J, Antonio Chiocca E, Kaur B, Feng M, Caligiuri MA, Yu J. An oncolytic virus expressing a full-length antibody enhances antitumor innate immune response to glioblastoma. Nat Commun 2021; 12(1): 5908

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  139. Niemann J, Woller N, Brooks J, Fleischmann-Mundt B, Martin NT, Kloos A, Knocke S, Ernst AM, Manns MP, Kubicka S, Wirth TC, Gerardy-Schahn R, Kühnel F. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun 2019; 10(1): 3236

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  140. Yang Q, Guo N, Zhou Y, Chen J, Wei Q, Han M. The role of tumor-associated macrophages (TAMs) in tumor progression and relevant advance in targeted therapy. Acta Pharm Sin B 2020; 10(11): 2156–2170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu S, Yi M, Wu Y, Dong B, Wu K. Roles of tumor-associated macrophages in tumor progression: implications on therapeutic strategies. Exp Hematol Oncol 2021; 10(1): 60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Wang J, Li D, Cang H, Guo B. Crosstalk between cancer and immune cells: role of tumor-associated macrophages in the tumor microenvironment. Cancer Med 2019; 8(10): 4709–4721

    Article  PubMed  PubMed Central  Google Scholar 

  143. Muñoz-Rojas AR, Kelsey I, Pappalardo JL, Chen M, Miller-Jensen K. Co-stimulation with opposing macrophage polarization cues leads to orthogonal secretion programs in individual cells. Nat Commun 2021; 12(1): 301

    Article  PubMed  PubMed Central  Google Scholar 

  144. Müller E, Christopoulos PF, Halder S, Lunde A, Beraki K, Speth M, Øynebråten I, Corthay A. Toll-like receptor ligands and interferon-γ synergize for induction of antitumor M1 macrophages. Front Immunol 2017; 8: 1383

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol 2020; 11: 583084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Lin C, Ren W, Luo Y, Li S, Chang Y, Li L, Xiong D, Huang X, Xu Z, Yu Z, Wang Y, Zhang J, Huang C, Xia N. Intratumoral delivery of a PD-1-blocking scFv encoded in oncolytic HSV-1 promotes antitumor immunity and synergizes with TIGIT blockade. Cancer Immunol Res 2020; 8(5): 632–647

    Article  PubMed  Google Scholar 

  147. Cao F, Nguyen P, Hong B, DeRenzo C, Rainusso NC, Rodriguez Cruz T, Wu MF, Liu H, Song XT, Suzuki M, Wang LL, Yustein JT, Gottschalk S. Engineering oncolytic vaccinia virus to redirect macrophages to tumor cells. Adv Cell Gene Ther 2021; 4(2): e99

    Article  CAS  PubMed  Google Scholar 

  148. Bruno A, Mortara L, Baci D, Noonan DM, Albini A. Myeloid derived suppressor cells interactions with natural killer cells and pro-angiogenic activities: roles in tumor progression. Front Immunol 2019; 10: 771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cheng JN, Yuan YX, Zhu B, Jia Q. Myeloid-derived suppressor cells: a multifaceted accomplice in tumor progression. Front Cell Dev Biol 2021; 9: 740827

    Article  PubMed  PubMed Central  Google Scholar 

  150. Wu H, Li SS, Zhou M, Jiang AN, He Y, Wang S, Yang W, Liu H. Palliative radiofrequency ablation accelerates the residual tumor progression through increasing tumor-infiltrating MDSCs and reducing T-cell-mediated anti-tumor immune responses in animal model. Front Oncol 2020; 10: 1308

    Article  PubMed  PubMed Central  Google Scholar 

  151. Chen Y, Xu Y, Zhao H, Zhou Y, Zhang J, Lei J, Wu L, Zhou M, Wang J, Yang S, Zhang X, Yan G, Li Y. Myeloid-derived suppressor cells deficient in cholesterol biosynthesis promote tumor immune evasion. Cancer Lett 2023; 564: 216208

    Article  CAS  PubMed  Google Scholar 

  152. Li K, Shi H, Zhang B, Ou X, Ma Q, Chen Y, Shu P, Li D, Wang Y. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer. Signal Transduct Target Ther 2021; 6(1): 362

    Article  PubMed  PubMed Central  Google Scholar 

  153. Tomić S, Joksimović B, Bekić M, Vasiljević M, Milanović M, Čolić M, Vučević D. Prostaglanin-E2 potentiates the suppressive functions of human mononuclear myeloid-derived suppressor cells and increases their capacity to expand IL-10-producing regulatory T cell subsets. Front Immunol 2019; 10: 475

    Article  PubMed  PubMed Central  Google Scholar 

  154. Tan Z, Liu L, Chiu MS, Cheung KW, Yan CW, Yu Z, Lee BK, Liu W, Man K, Chen Z. Virotherapy-recruited PMN-MDSC infiltration of mesothelioma blocks antitumor CTL by IL-10-mediated dendritic cell suppression. OncoImmunology 2018; 8(1): e1518672

    Article  PubMed  PubMed Central  Google Scholar 

  155. Otani Y, Yoo JY, Lewis CT, Chao S, Swanner J, Shimizu T, Kang JM, Murphy SA, Rivera-Caraballo K, Hong B, Glorioso JC, Nakashima H, Lawler SE, Banasavadi-Siddegowda Y, Heiss JD, Yan Y, Pei G, Caligiuri MA, Zhao Z, Chiocca EA, Yu J, Kaur B. NOTCH-induced MDSC recruitment after oHSV virotherapy in CNS cancer models modulates antitumor immunotherapy. Clin Cancer Res 2022; 28(7): 1460–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Hou W, Sampath P, Rojas JJ, Thorne SH. Oncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapy. Cancer Cell 2016; 30(1): 108–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The complex role of regulatory T cells in immunity and aging. Front Immunol 2021; 11: 616949

    Article  PubMed  PubMed Central  Google Scholar 

  158. Yano H, Andrews LP, Workman CJ, Vignali DAA. Intratumoral regulatory T cells: markers, subsets and their impact on antitumor immunity. Immunology 2019; 157(3): 232–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur J Immunol 2019; 49(8): 1140–1146

    Article  CAS  PubMed  Google Scholar 

  160. González-Navajas JM, Fan DD, Yang S, Yang FM, Lozano-Ruiz B, Shen L, Lee J. The impact of Tregs on the anticancer immunity and the efficacy of immune checkpoint inhibitor therapies. Front Immunol 2021; 12: 625783

    Article  PubMed  PubMed Central  Google Scholar 

  161. Zammarchi F, Havenith K, Bertelli F, Vijayakrishnan B, Chivers S, van Berkel PH. CD25-targeted antibody-drug conjugate depletes regulatory T cells and eliminates established syngeneic tumors via antitumor immunity. J Immunother Cancer 2020; 8(2): e000860

    Article  PubMed  PubMed Central  Google Scholar 

  162. Solomon I, Amann M, Goubier A, Arce Vargas F, Zervas D, Qing C, Henry JY, Ghorani E, Akarca AU, Marafioti T, Śledzińska A, Werner Sunderland M, Franz Demane D, Clancy JR, Georgiou A, Salimu J, Merchiers P, Brown MA, Flury R, Eckmann J, Murgia C, Sam J, Jacobsen B, Marrer-Berger E, Boetsch C, Belli S, Leibrock L, Benz J, Koll H, Sutmuller R, Peggs KS, Quezada SA. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat Cancer 2020; 1(12): 1153–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sugawara K, Iwai M, Ito H, Tanaka M, Seto Y, Todo T. Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Mol Ther Oncolytics 2021; 22: 129–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Moon LD, Asher RA, Fawcett JW. Limited growth of severed CNS axons after treatment of adult rat brain with hyaluronidase. J Neurosci Res 2003; 71(1): 23–37

    Article  CAS  PubMed  Google Scholar 

  165. Ramanujan S, Pluen A, McKee TD, Brown EB, Boucher Y, Jain RK. Diffusion and convection in collagen gels: implications for transport in the tumor interstitium. Biophys J 2002; 83(3): 1650–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Pires A, Greenshields-Watson A, Jones E, Smart K, Lauder SN, Somerville M, Milutinovic S, Kendrick H, Hindley JP, French R, Smalley MJ, Watkins WJ, Andrews R, Godkin A, Gallimore A. Immune remodeling of the extracellular matrix drives loss of cancer stem cells and tumor rejection. Cancer Immunol Res 2020; 8(12): 1520–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Pibuel MA, Poodts D, Diaz M, Hajos SE, Lompardia SL. The scrambled story between hyaluronan and glioblastoma. J Biol Chem 2021; 296: 100549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kiyokawa J, Kawamura Y, Ghouse SM, Acar S, Barçin E, Martínez-Quintanilla J, Martuza RL, Alemany R, Rabkin SD, Shah K, Wakimoto H. Modification of extracellular matrix enhances oncolytic adenovirus immunotherapy in glioblastoma. Clin Cancer Res 2021; 27(3): 889–902

    Article  CAS  PubMed  Google Scholar 

  169. Kim JH, Lee YS, Kim H, Huang JH, Yoon AR, Yun CO. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98(20): 1482–1493

    Article  CAS  PubMed  Google Scholar 

  170. Jung BK, Ko HY, Kang H, Hong J, Ahn HM, Na Y, Kim H, Kim JS, Yun CO. Relaxin-expressing oncolytic adenovirus induces remodeling of physical and immunological aspects of cold tumor to potentiate PD-1 blockade. J Immunother Cancer 2020; 8(2): e000763

    Article  PubMed  PubMed Central  Google Scholar 

  171. Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V, Lara-Riegos J, Ramírez-Camacho MA, Alvarez-Sánchez ME. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol 2019; 9: 1370

    Article  PubMed  PubMed Central  Google Scholar 

  172. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 2007; 8(3): 221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R, She JX. A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 2019; 19(1): 581

    Article  PubMed  PubMed Central  Google Scholar 

  174. Huang JF, Du WX, Chen JJ. Elevated expression of matrix metalloproteinase-3 in human osteosarcoma and its association with tumor metastasis. J BUON 2016; 21(5): 1279–1286

    PubMed  Google Scholar 

  175. Mehner C, Miller E, Nassar A, Bamlet WR, Radisky ES, Radisky DC. Tumor cell expression of MMP3 as a prognostic factor for poor survival in pancreatic, pulmonary, and mammary carcinoma. Genes Cancer 2015; 6(11–12): 480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Liang M, Wang J, Wu C, Wu M, Hu J, Dai J, Ruan H, Xiong S, Dong C. Targeting matrix metalloproteinase MMP3 greatly enhances oncolytic virus mediated tumor therapy. Transl Oncol 2021; 14(12): 101221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Mok W, Boucher Y, Jain RK. Matrix metalloproteinases-1 and -8 improve the distribution and efficacy of an oncolytic virus. Cancer Res 2007; 67(22): 10664–10668

    Article  CAS  PubMed  Google Scholar 

  178. Hong CS, Fellows W, Niranjan A, Alber S, Watkins S, Cohen JB, Glorioso JC, Grandi P. Ectopic matrix metalloproteinase-9 expression in human brain tumor cells enhances oncolytic HSV vector infection. Gene Ther 2010; 17(10): 1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Choi H, Moon A. Crosstalk between cancer cells and endothelial cells: implications for tumor progression and intervention. Arch Pharm Res 2018; 41(7): 711–724

    Article  CAS  PubMed  Google Scholar 

  180. Breitbach CJ, De Silva NS, Falls TJ, Aladl U, Evgin L, Paterson J, Sun YY, Roy DG, Rintoul JL, Daneshmand M, Parato K, Stanford MM, Lichty BD, Fenster A, Kirn D, Atkins H, Bell JC. Targeting tumor vasculature with an oncolytic virus. Mol Ther 2011; 19(5): 886–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Hou W, Chen H, Rojas J, Sampath P, Thorne SH. Oncolytic vaccinia virus demonstrates antiangiogenic effects mediated by targeting of VEGF. Int J Cancer 2014; 135(5): 1238–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Matuszewska K, Santry LA, van Vloten JP, AuYeung AWK, Major PP, Lawler J, Wootton SK, Bridle BW, Petrik J. Combining vascular normalization with an oncolytic virus enhances immunotherapy in a preclinical model of advanced-stage ovarian cancer. Clin Cancer Res 2019; 25(5): 1624–1638

    Article  CAS  PubMed  Google Scholar 

  183. Quixabeira DCA, Zafar S, Santos JM, Cervera-Carrascon V, Havunen R, Kudling TV, Basnet S, Anttila M, Kanerva A, Hemminki A. Oncolytic adenovirus coding for a variant interleukin 2 (vIL-2) cytokine re-programs the tumor microenvironment and confers enhanced tumor control. Front Immunol 2021; 12: 674400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Heiniö C, Havunen R, Santos J, de Lint K, Cervera-Carrascon V, Kanerva A, Hemminki A. TNFa and IL2 encoding oncolytic adenovirus activates pathogen and danger-associated immunological signaling. Cells 2020; 9(4): 798

    Article  PubMed  PubMed Central  Google Scholar 

  185. Ekeke CN, Russell KL, Murthy P, Guo ZS, Soloff AC, Weber D, Pan W, Lotze MT, Dhupar R. Intrapleural interleukin-2-expressing oncolytic virotherapy enhances acute antitumor effects and T-cell receptor diversity in malignant pleural disease. J Thorac Cardiovasc Surg 2022; 163(4): e313–e328

    Article  PubMed  Google Scholar 

  186. Ge Y, Wang H, Ren J, Liu W, Chen L, Chen H, Ye J, Dai E, Ma C, Ju S, Guo ZS, Liu Z, Bartlett DL. Oncolytic vaccinia virus delivering tethered IL-12 enhances antitumor effects with improved safety. J Immunother Cancer 2020; 8(1): e000710

    Article  PubMed  PubMed Central  Google Scholar 

  187. Nakao S, Arai Y, Tasaki M, Yamashita M, Murakami R, Kawase T, Amino N, Nakatake M, Kurosaki H, Mori M, Takeuchi M, Nakamura T. Intratumoral expression of IL-7 and IL-12 using an oncolytic virus increases systemic sensitivity to immune checkpoint blockade. Sci Transl Med 2020; 12(526): eaax7992

    Article  CAS  PubMed  Google Scholar 

  188. Nishio N, Dotti G. Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors. OncoImmunology 2015; 4(2): e988098

    Article  PubMed  PubMed Central  Google Scholar 

  189. Liu D, Ma J, Ding B, Zhou H. Oncolytic vaccinia virus expressing CD40L (CD40L-VV) inhibits colorectal cancer cell growth and enhances anti-tumor activity of T cells in tumor-bearing mice. Chin J Cell Mol Imm (Xibao Yu Fenzi MianYiXue ZaZhi) 2021; 37(7): 602–607 (in Chinese)

    Google Scholar 

  190. Hinterberger M, Giessel R, Fiore G, Graebnitz F, Bathke B, Wennier S, Chaplin P, Melero I, Suter M, Lauterbach H, Berraondo P, Hochrein H, Medina-Echeverz J. Intratumoral virotherapy with 4-1BBL armed modified vaccinia Ankara eradicates solid tumors and promotes protective immune memory. J Immunother Cancer 2021; 9(2): e001586

    Article  PubMed  PubMed Central  Google Scholar 

  191. Ju F, Luo Y, Lin C, Jia X, Xu Z, Tian R, Lin Y, Zhao M, Chang Y, Huang X, Li S, Ren W, Qin Y, Yu M, Jia J, Han J, Luo W, Zhang J, Fu G, Ye X, Huang C, Xia N. Oncolytic virus expressing PD-1 inhibitors activates a collaborative intratumoral immune response to control tumor and synergizes with CTLA-4 or TIM-3 blockade. J Immunother Cancer 2022; 10(6): e004762

    Article  PubMed  PubMed Central  Google Scholar 

  192. Zuo S, Wei M, He B, Chen A, Wang S, Kong L, Zhang Y, Meng G, Xu T, Wu J, Yang F, Zhang H, Wang S, Guo C, Wu J, Dong J, Wei J. Enhanced antitumor efficacy of a novel oncolytic vaccinia virus encoding a fully monoclonal antibody against T-cell immunoglobulin and ITIM domain (TIGIT). EBioMedicine 2021; 64: 103240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Arnone CM, Polito VA, Mastronuzzi A, Carai A, Diomedi FC, Antonucci L, Petrilli LL, Vinci M, Ferrari F, Salviato E, Scarsella M, De Stefanis C, Weber G, Quintarelli C, De Angelis B, Brenner MK, Gottschalk S, Hoyos V, Locatelli F, Caruana I, Del Bufalo F. Oncolytic adenovirus and gene therapy with EphA2-BiTE for the treatment of pediatric high-grade gliomas. J Immunother Cancer 2021; 9(5): e001930

    Article  PubMed  PubMed Central  Google Scholar 

  194. de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R. Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer 2019; 7(1): 19

    Article  PubMed  PubMed Central  Google Scholar 

  195. Barlabé P, Sostoa J, Fajardo CA, Alemany R, Moreno R. Enhanced antitumor efficacy of an oncolytic adenovirus armed with an EGFR-targeted BiTE using menstrual blood-derived mesenchymal stem cells as carriers. Cancer Gene Ther 2020; 27(5): 383–388

    Article  PubMed  Google Scholar 

  196. Khalique H, Baugh R, Dyer A, Scott EM, Frost S, Larkin S, Lei-Rossmann J, Seymour LW. Oncolytic herpesvirus expressing PD-L1 BiTE for cancer therapy: exploiting tumor immune suppression as an opportunity for targeted immunotherapy. J Immunother Cancer 2021; 9(4): e001292

    Article  PubMed  PubMed Central  Google Scholar 

  197. Lei W, Ye Q, Hao Y, Chen J, Huang Y, Yang L, Wang S, Qian W. CD19-targeted BiTE expression by an oncolytic vaccinia virus significantly augments therapeutic efficacy against B-cell lymphoma. Blood Cancer J 2022; 12(2): 35

    Article  PubMed  PubMed Central  Google Scholar 

  198. Yu F, Wang X, Guo ZS, Bartlett DL, Gottschalk SM, Song XT. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014; 22(1): 102–111

    Article  CAS  PubMed  Google Scholar 

  199. Cohn DE, Sill MW, Walker JL, O’Malley D, Nagel CI, Rutledge TL, Bradley W, Richardson DL, Moxley KM, Aghajanian C. Randomized phase IIB evaluation of weekly paclitaxel versus weekly paclitaxel with oncolytic reovirus (Reolysin®) in recurrent ovarian, tubal, or peritoneal cancer: an NRG oncology/gynecologic oncology group study. Gynecol Oncol 2017; 146(3): 477–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA, Kaur JS, Haluska PJJr, Aderca I, Zollman PJ, Sloan JA, Keeney G, Atherton PJ, Podratz KC, Dowdy SC, Stanhope CR, Wilson TO, Federspiel MJ, Peng KW, Russell SJ. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70(3): 875–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. McGray AJR, Huang RY, Battaglia S, Eppolito C, Miliotto A, Stephenson KB, Lugade AA, Webster G, Lichty BD, Seshadri M, Kozbor D, Odunsi K. Oncolytic Maraba virus armed with tumor antigen boosts vaccine priming and reveals diverse therapeutic response patterns when combined with checkpoint blockade in ovarian cancer. J Immunother Cancer 2019; 7(1): 189

    Article  PubMed  PubMed Central  Google Scholar 

  202. Chesney JA, Puzanov I, Collichio FA, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, Logan T, Hauschild A, Lebbé C, Joshi H, Snyder W, Mehnert JM. Talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone for advanced melanoma: 5-year final analysis of a multicenter, randomized, open-label, phase II trial. J Immunother Cancer 2023; 11(5): e006270

    Article  PubMed  PubMed Central  Google Scholar 

  203. Vähä-Koskela M, Hinkkanen A. Tumor restrictions to oncolytic virus. Biomedicines 2014; 2(2): 163–194

    Article  PubMed  PubMed Central  Google Scholar 

  204. El-Sayes N, Vito A, Mossman K. Tumor heterogeneity: a great barrier in the age of cancer immunotherapy. Cancers (Basel) 2021; 13(4): 806

    Article  CAS  PubMed  Google Scholar 

  205. Suzuki T, Uchida H, Shibata T, Sasaki Y, Ikeda H, Hamada-Uematsu M, Hamasaki R, Okuda K, Yanagi S, Tahara H. Potent anti-tumor effects of receptor-retargeted syncytial oncolytic herpes simplex virus. Mol Ther Oncolytics 2021; 22: 265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. van Erp EA, Kaliberova LN, Kaliberov SA, Curiel DT. Retargeted oncolytic adenovirus displaying a single variable domain of camelid heavy-chain-only antibody in a fiber protein. Mol Ther Oncolytics 2015; 2: 15001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Evgin L, Kottke T, Tonne J, Thompson J, Huff AL, van Vloten J, Moore M, Michael J, Driscoll C, Pulido J, Swanson E, Kennedy R, Coffey M, Loghmani H, Sanchez-Perez L, Olivier G, Harrington K, Pandha H, Melcher A, Diaz RM, Vile RG. Oncolytic virus-mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Sci Transl Med 2022; 14(640): eabn2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Rezaei R, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M, Mirzaei Nodooshan M, Ghorbani Alvanegh A. Combination therapy with CAR T cells and oncolytic viruses: a new era in cancer immunotherapy. Cancer Gene Ther 2022; 29(6): 647–660

    Article  CAS  PubMed  Google Scholar 

  209. Schirrmacher V. Cancer vaccines and oncolytic viruses exert profoundly lower side effects in cancer patients than other systemic therapies: a comparative analysis. Biomedicines 2020; 8(3): 61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2018; 174(4): 1031–1032

    Article  CAS  PubMed  Google Scholar 

  211. Liu W, Liu Y, Hu C, Xu C, Chen J, Chen Y, Cai J, Yan G, Zhu W. Cytotoxic T lymphocyte-associated protein 4 antibody aggrandizes antitumor immune response of oncolytic virus M1 via targeting regulatory T cells. Int J Cancer 2021; 149(6): 1369–1384

    Article  CAS  PubMed  Google Scholar 

  212. Zhang B, Cheng P. Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy. Mol Cancer 2020; 19(1): 158

    Article  PubMed  PubMed Central  Google Scholar 

  213. Zhu Z, McGray AJR, Jiang W, Lu B, Kalinski P, Guo ZS. Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways. Mol Cancer 2022; 21(1): 196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 32100732). Cartoons in Figs. 1–4 were created with BioRender.com.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ningshao Xia or Chenghao Huang.

Ethics declarations

Chaolong Lin, Wenzhong Teng, Yang Tian, Shaopeng Li, Ningshao Xia and Chenghao Huang declare that they have no conflict of interest. This manuscript is a review article and does not involve a research protocol requiring approval by the relevant institutional review board or ethics committee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Teng, W., Tian, Y. et al. Immune landscape and response to oncolytic virus-based immunotherapy. Front. Med. (2024). https://doi.org/10.1007/s11684-023-1048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11684-023-1048-0

Keywords

Navigation