Deep learning-based 3D quantitative total tumor burden predicts early recurrence of BCLC A and B HCC after resection

Author:

Wei Hong,Zheng Tianying,Zhang Xiaolan,Zheng Chao,Jiang Difei,Wu Yuanan,Lee Jeong Min,Bashir Mustafa R.,Lerner Emily,Liu Rongbo,Wu Botong,Guo Hua,Chen Yidi,Yang Ting,Gong Xiaoling,Jiang Hanyu,Song BinORCID

Abstract

Abstract Objectives This study aimed to evaluate the potential of deep learning (DL)-assisted automated three-dimensional quantitative tumor burden at MRI to predict postoperative early recurrence (ER) of hepatocellular carcinoma (HCC). Materials and methods This was a single-center retrospective study enrolling patients who underwent resection for BCLC A and B HCC and preoperative contrast-enhanced MRI. Quantitative total tumor volume (cm3) and total tumor burden (TTB, %) were obtained using a DL automated segmentation tool. Radiologists’ visual assessment was used to ensure the quality control of automated segmentation. The prognostic value of clinicopathological variables and tumor burden-related parameters for ER was determined by Cox regression analyses. Results A total of 592 patients were included, with 525 and 67 patients assigned to BCLC A and B, respectively (2-year ER rate: 30.0% vs. 45.3%; hazard ratio (HR) = 1.8; p = 0.007). TTB was the most important predictor of ER (HR = 2.2; p < 0.001). Using 6.84% as the threshold of TTB, two ER risk strata were obtained in overall (p < 0.001), BCLC A (p < 0.001), and BCLC B (p = 0.027) patients, respectively. The BCLC B low-TTB patients had a similar risk for ER to BCLC A patients and thus were reassigned to a BCLC An stage; whilst the BCLC B high-TTB patients remained in a BCLC Bn stage. The 2-year ER rate was 30.5% for BCLC An patients vs. 58.1% for BCLC Bn patients (HR = 2.8; p < 0.001). Conclusions TTB determined by DL-based automated segmentation at MRI was a predictive biomarker for postoperative ER and facilitated refined subcategorization of patients within BCLC stages A and B. Clinical relevance statement Total tumor burden derived by deep learning-based automated segmentation at MRI may serve as an imaging biomarker for predicting early recurrence, thereby improving subclassification of Barcelona Clinic Liver Cancer A and B hepatocellular carcinoma patients after hepatectomy. Key Points Total tumor burden (TTB) is important for Barcelona Clinic Liver Cancer (BCLC) staging, but is heterogenous. TTB derived by deep learning-based automated segmentation was predictive of postoperative early recurrence. Incorporating TTB into the BCLC algorithm resulted in successful subcategorization of BCLC A and B patients.

Funder

National Natural Science Foundation of China

the China Postdoctoral Science Foundation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence techniques in liver cancer;Frontiers in Oncology;2024-09-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3