Automatic personal identification using a single CT image

Author:

Heinrich AndreasORCID

Abstract

Abstract Objectives Computer vision (CV) mimics human vision, enabling computers to automatically compare radiological images from recent examinations with a large image database for unique identification, crucial in emergency scenarios involving unknown patients or deceased individuals. This study aims to extend a CV-based personal identification method from orthopantomograms (OPGs) to computed tomography (CT) examinations using single CT slices. Methods The study analyzed 819 cranial computed tomography (CCT) examinations from 722 individuals, focusing on single CT slices from six anatomical regions to explore their potential for CV-based personal identification in 69 procedures. CV automatically identifies and describes interesting features in images, which can be recognized in a reference image and then designated as matching points. In this study, the number of matching points was used as an indicator for identification. Results Across six different regions, identification rates ranged from 41/69 (59%) to 69/69 (100%) across over 700 possible identities. Comparison of images from the same individual achieved higher matching points, averaging 6.32 ± 0.52% (100% represents the maximum possible matching points), while images of different individuals averaged 0.94 ± 0.15%. Reliable matching points are found in the teeth, maxilla, cervical spine, skull bones, and paranasal sinuses, with the maxillary sinuses and ethmoidal cells being particularly suitable for identification due to their abundant matching points. Conclusion Unambiguous identification of individuals based on a single CT slice is achievable, with maxillary sinus CT slices showing the highest identification rates. However, metal artifacts, especially from dental prosthetics, and various head positions can hinder identification. Clinical relevance statement Radiology possesses a multitude of reference images for a CV database, facilitating automated CV-based personal identification in emergency examinations or cases involving unknown deceased individuals. This enhances patient care and communication with relatives by granting access to medical history. Key Points Unknown individuals in radiology or forensics pose challenges, addressed through automatic CV-based identification methods. A single CT slice highlighting the maxillary sinuses is particularly effective for personal identification. Radiology plays a pivotal role in automated personal identification by leveraging its extensive image database.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3