Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study
Author:
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Link
http://link.springer.com/content/pdf/10.1007/s00330-020-06724-w.pdf
Reference35 articles.
1. Brenner DJ, Hall EJ (2007) Computed tomography--an increasing source of radiation exposure. N Engl J Med 357:2277–2284
2. Greffier J, Pereira F, Macri F, Beregi JP, Larbi A (2016) CT dose reduction using automatic exposure control and iterative reconstruction: a chest paediatric phantoms study. Phys Med 32:582–589
3. Beregi JP, Greffier J (2019) Low and ultra-low dose radiation in CT: opportunities and limitations. Diagn Interv Imaging 100:63–64
4. Greffier J, Frandon J, Larbi A, Beregi JP, Pereira F (2019) CT iterative reconstruction algorithms: a task-based image quality assessment. Eur Radiol. https://doi.org/10.1007/s00330-019-06359-6
5. Willemink MJ, Noel PB (2019) The evolution of image reconstruction for CT-from filtered back projection to artificial intelligence. Eur Radiol 29:2185–2195
Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection of Pulmonary Nodules on Ultra-low Dose Chest Computed Tomography With Deep-learning Image Reconstruction Algorithm;Journal of Thoracic Imaging;2024-09-13
2. Image quality and radiation doses in abdominal CT: A multicenter study;European Journal of Radiology;2024-09
3. Artificial intelligence in COPD CT images: identification, staging, and quantitation;Respiratory Research;2024-08-22
4. Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT;Journal of Computer Assisted Tomography;2024-08-02
5. Clinical value of deep learning image reconstruction on the diagnosis of pulmonary nodule for ultra-low-dose chest CT imaging;Clinical Radiology;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3