Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients

Author:

Schmitt N.,Mokli Y.,Weyland C. S.,Gerry S.,Herweh C.,Ringleb P. A.,Nagel S.

Abstract

Abstract Objectives Artif icial intelligence (AI)–based image analysis is increasingly applied in the acute stroke field. Its implementation for the detection and quantification of hemorrhage suspect hyperdensities in non-contrast-enhanced head CT (NCCT) scans may facilitate clinical decision-making and accelerate stroke management. Methods NCCTs of 160 patients with suspected acute stroke were analyzed regarding the presence or absence of acute intracranial hemorrhages (ICH) using a novel AI-based algorithm. Read was performed by two blinded neuroradiology residents (R1 and R2). Ground truth was established by an expert neuroradiologist. Specificity, sensitivity, and area under the curve were calculated for ICH and intraparenchymal hemorrhage (IPH) detection. IPH-volumes were segmented and quantified automatically by the algorithm and semi-automatically. Intraclass correlation coefficient (ICC) and Dice coefficient (DC) were calculated. Results In total, 79 of 160 patients showed acute ICH, while 47 had IPH. Sensitivity and specificity for ICH detection were 0.91 and 0.89 for the algorithm; 0.99 and 0.98 for R1; and 1.00 and 0.98 for R2. Sensitivity and specificity for IPH detection were 0.98 and 0.89 for the algorithm; 0.83 and 0.99 for R1; and 0.91 and 0.99 for R2. Interreader reliability for ICH and IPH detection showed strong agreements for the algorithm (0.80 and 0.84), R1 (0.96 and 0.84), and R2 (0.98 and 0.92), respectively. ICC indicated an excellent (0.98) agreement between the algorithm and the reference standard of the IPH-volumes. The mean DC was 0.82. Conclusion The AI-based algorithm reliably assessed the presence or absence of acute ICHs in this dataset and quantified IPH volumes precisely. Key Points Artificial intelligence (AI) is able to detect hyperdense volumes on brain CTs reliably. Sensitivity and specificity are highest for the detection of intraparenchymal hemorrhages. Interreader reliability for hemorrhage detection shows strong agreement for AI and human readers.

Funder

Universitätsklinikum Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3