Skip to main content

Determination of Copper Amine Oxidase Activity in Plant Tissues

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

Copper amine oxidases (CuAOs) involved in polyamine catabolism are emerging as physiologically relevant enzymes for their involvement in plant growth, differentiation and defence responses to biotic and abiotic stress. In this chapter, we describe two spectrophotometric and one polarographic method for determining CuAO activity in plant tissues. Some aspects related to cell wall association of apoplastic CuAOs and possible interference of plant metabolites with the enzymatic activity assays are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  CAS  PubMed  Google Scholar 

  2. Tiburcio AF, Altabella T, Bitrián M, Alcázar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240:1–18

    Article  CAS  Google Scholar 

  3. Tavladoraki P, Cona A, Angelini R (2016) Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front Plant Sci 7:824

    Article  PubMed  PubMed Central  Google Scholar 

  4. Padiglia A, Medda R, Pedersen JZ, Finazzi Agrò A, Lorrai A, Murgia B, Floris G (1999) Effect of metal substitution in copper amine oxidase from lentil seedlings. J Biol Inorg Chem 4:608–613

    Article  CAS  PubMed  Google Scholar 

  5. Medda R, Bellelli A, Peč P, Federico R, Cona A, Floris G (2009) Copper amine oxidases from plants. In: Floris G, Mondovì B (eds) Copper amine oxidases: structure, catalytic mechanism and role in pathophysiology. Taylor and Francis Group, C.R.C. Press, Boca Raton, pp 39–50

    Chapter  Google Scholar 

  6. Planas-Portell J, Gallart M, Tiburcio AF, Altabella T (2013) Copper containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol 13:109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zarei A, Trobacher CP, Cooke AR, Meyers AJ, Hall JC, Shelp BJ (2015) Apple fruit copper amine oxidase isoforms: peroxisomal MdAO1 prefers diamines as substrates, whereas extracellular MdAO2 exclusively utilizes monoamines. Plant Cell Physiol 56:137–147

    Article  CAS  PubMed  Google Scholar 

  8. Naconsie M, Kato K, Shoji T, Hashimoto T (2014) Molecular evolution of N-methylputrescine oxidase in tobacco. Plant Cell Physiol 55:436–444

    Article  CAS  PubMed  Google Scholar 

  9. Tavladoraki P, Cona A, Federico R, Tempera G, Viceconte N, Saccoccio S, Battaglia V, Toninello A, Agostinelli E (2012) Polyamine catabolism: target for antiproliferative therapies in animals and stress tolerance strategies in plants. Amino Acids 42:411–426

    Article  CAS  Google Scholar 

  10. Ahou A, Martignago D, Alabdallah O, Tavazza R, Stano P, Macone A, Pivato M, Masi A, Rambla JL, Vera-Sirera F, Angelini R, Federico R, Tavladoraki P (2014) A plant spermine oxidase/dehydrogenase regulated by the proteasome and polyamines. J Exp Bot 65:1585–1603

    Google Scholar 

  11. Ghuge SA, Carucci A, Rodrigues-Pousada RA, Tisi A, Franchi S, Tavladoraki P, Angelini R, Cona A (2015) The apoplastic copper AMINE OXIDASE1 mediates jasmonic acid-induced protoxylem differentiation in Arabidopsis roots. Plant Physiol 168:690–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghuge SA, Carucci A, Rodrigues-Pousada RA, Tisi A, Franchi S, Tavladoraki P, Angelini R, Cona A (2015) The MeJA-inducible copper amine oxidase AtAO1 is expressed in xylem tissue and guard cells. Plant Signal Behav 10:e1073872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghuge SA, Tisi A, Carucci A, Rodrigues-Pousada RA, Franchi S, Tavladoraki P, Angelini R, Cona A (2015) Cell wall amine oxidases: new players in root xylem differentiation under stress conditions. Plants (Basel) 4:489–504

    Article  CAS  Google Scholar 

  14. Qu Y, An Z, Zhuang B, Jing W, Zhang Q, Zhang W (2014) Copper amine oxidase and phospholipase D act independently in abscisic acid (ABA)-induced stomatal closure in Vicia faba and Arabidopsis. J Plant Res 127:533–544

    Article  CAS  PubMed  Google Scholar 

  15. Bellelli A, Agro AF, Floris G, Brunori M (1991) On the mechanism and rate of substrate oxidation by amine oxidase from lentil seedlings. J Biol Chem 266:20654–20657

    PubMed  CAS  Google Scholar 

  16. Smith TA, Barker JHA (1988) The di- and polyamine oxidase of higher plants. In: Zappia V, Pegg AE (eds) Progress in polyamine research: novel biochemical, pharmacological and clinical aspects. Plenum Press, New York, pp 573–587

    Chapter  Google Scholar 

  17. Shepard EM, Dooley DM (2015) Inhibition and oxygen activation in copper amine oxidases. Acc Chem Res 48:1218–1226

    Article  CAS  PubMed  Google Scholar 

  18. Mills SA, Brown DE, Dang K, Sommer D, Bitsimis A, Nguyen J, Dooley DM (2012) Cobalt substitution supports an inner-sphere electron transfer mechanism for oxygen reduction in pea seedling amine oxidase. J Biol Inorg Chem 17:507–515

    Article  CAS  PubMed  Google Scholar 

  19. Pietrangeli P, Nocera S, Federico R, Mondovi B, Morpurgo L (2004) Inactivation of copper-containing amine oxidase by turnover products. Eur J Biochem 271:146–152

    Google Scholar 

  20. Holmsted B, Larrson L, Than R (1961) Further studies of a spectrophotometric method for the determination of diamine oxidase. Biochim Biophys Acta 48:182–186

    Article  Google Scholar 

  21. Barham D, Trinder P (1972) An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst 97:142–145.

    Article  CAS  PubMed  Google Scholar 

  22. Fossati P, Prencipe L, Berti G (1980) Use of 3, 5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26:227–231

    PubMed  CAS  Google Scholar 

  23. Fraisse L, Bonnet MC, de Farcy JP, Agut C, Dersigny D, Bayolb A (2002) A colorimetric 96-well microtiter plate assay for the determination of urate oxidase activity and its kinetic parameters. Anal Biochem 309:173–179

    Google Scholar 

  24. Clark LC Jr (1956) Monitor and control of blood and tissue oxygen tension. Trans Am Soc Artificial Int Organs 2:41–48

    Google Scholar 

  25. Angelini R, Manes R, Federico R (1990) Spatial and functional correlation between diamine oxidase and peroxidase activities and their dependence upon de-etiolation and wounding in chick-pea stems. Planta 182:89–96

    Article  CAS  PubMed  Google Scholar 

  26. Terry ME, Bonner BA (1980) An examination of centrifugation as a method of extracting an extracellular solution from peas, and its use for the study of indoleacetic acid-induced growth. Plant Physiol 66:321–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Federico R, Angelini R (1986) Occurrence of diamine oxidase in the apoplast of pea epicotyls. Planta 167:300–303

    Article  CAS  PubMed  Google Scholar 

  28. Martinello F, Luiz da Silva E (2006) Mechanism of ascorbic acid interference in biochemical tests that use peroxide and peroxidase to generate chromophore. Clin Chim Acta 373:108–116

    Article  CAS  PubMed  Google Scholar 

  29. de Pinto MC, De Gara L (2004) Changes in the ascorbate metabolism of apoplastic and symplastic spaces are associated with cell differentiation. J Exp Bot 55:2559–2569

    Article  CAS  PubMed  Google Scholar 

  30. Robinson J, Cooper JM (1969) Method of determining oxygen concentration in biological media, suitable for calibration of the oxygen electrode. Anal Biochem 33:390–399

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Angelini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Angelini, R., Cona, A., Tavladoraki, P. (2018). Determination of Copper Amine Oxidase Activity in Plant Tissues. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics