Abstract
AbstractSpatially incoherent light sources, such as spontaneously emitting atoms, naively require Maxwell’s equations to be solved many times to obtain the total emission, which becomes computationally intractable in conjunction with large-scale optimization (inverse design). We present a trace formulation of incoherent emission that can be efficiently combined with inverse design, even for topology optimization over thousands of design degrees of freedom. Our formulation includes previous reciprocity-based approaches, limited to a few output channels (e.g., normal emission), as special cases but generalizes to a continuum of emission directions by exploiting the low-rank structure of emission problems. We present several examples of incoherent-emission topology optimization, including tailoring the geometry of fluorescent particles, a periodically emitting surface, and a structure emitting into a waveguide mode, as well as discussing future applications to problems such as Raman sensing and cathodoluminescence.
Funder
Defense Advanced Research Projects Agency
Army Research Laboratory
Severo Ochoa Centre of Excellence
Danish National Research Foundation
Massachusetts Institute of Technology
Publisher
Springer Science and Business Media LLC
Subject
Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献