A passive load alleviation aircraft wing: topology optimization for maximizing nonlinear bending–torsion coupling

Author:

Thel SimonORCID,Hahn Daniel,Haupt Matthias,Heimbs Sebastian

Abstract

AbstractAircraft wings with passive load alleviation morph their shape to a configuration where the aerodynamic forces are reduced without the use of an actuator. In our research, we exploit geometric nonlinearities of the inner wing structure to maximize load alleviation. In order to find designs with the desired properties, we propose a topology optimization approach. Passive load alleviation is achieved through bending–torsion coupling. The wing twist will reduce the angle of attack, thus lowering the aerodynamic forces. Consequently, the objective function is to maximize the torsion angle. Since shape morphing should only affect loads that exceed normal maneuvering loads, a displacement constraint is enforced, preventing torsion at lower force levels. Maximizing the displacement will lead to topologies for which the finite element solver cannot find a solution. To circumvent this, we propose adding a compliance value to the objective function. This term has a weighting function, which controls how much influence the compliance value has: after a set number of iterations, the initially high level of influence will drop. We used a geometric nonlinear finite element formulation with a linear elastic material model. The addition of an energy interpolation scheme reduces mesh distortion. We successfully applied the proposed methodology to two different test cases resembling an aircraft wing box section. These test cases illustrate the methodology’s potential for designing new geometries with the desired nonlinear behavior. We discuss what design features can be deduced and how they achieve the nonlinear structural response.

Funder

Deutsche Forschungsgemeinschaft

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3