Variational sensitivity analysis of elastoplastic structures applied to optimal shape of specimens

Author:

Liedmann JanORCID,Barthold Franz-Joseph

Abstract

AbstractThe aim of this paper is to improve the shape of specimens for biaxial experiments with respect to optimal stress states, characterized by the stress triaxiality. Gradient-based optimization strategies are used to achieve this goal. Thus, it is crucial to know how the stress state changes if the geometric shape of the specimen is varied. The design sensitivity analysis (DSA) of the stress triaxiality is performed using a variational approach based on an enhanced kinematic concept that offers a rigorous separation of structural and physical quantities. In the present case of elastoplastic material behavior, the deformation history has to be taken into account for the structural analysis as well as for the determination of response sensitivities. The presented method is flexible in terms of the choice of design variables. In a first step, the approach is used to identify material parameters. Thus, material parameters are chosen as design variables. Subsequently, the design parameters are chosen as geometric quantities so as to optimize the specimen shape with the aim to obtain a preferably homogeneous stress triaxiality distribution in the relevant cross section of the specimen.

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3