A facile Agrobacterium-mediated transformation method for the model unicellular green algae Chlamydomonas reinhardtii

Author:

Quach Truyen N.ORCID,Sato Shirley J.,Behrens Mark R.,Black Paul N.,DiRusso Concetta C.,Cerutti Heriberto D.,Clemente Tom Elmo

Abstract

AbstractA reliable and simple Agrobacterium-mediated transformation system for the unicellular green algae model organism Chlamydomonas reinhardtii has been developed. The protocol has been successfully employed with both neomycin phosphotransferase II (nptII) and the phleomycin resistance (bleI) genes coupled with the selective agents paromomycin and zeocin, respectively. A set of binary vectors were assembled that carry the selectable marker cassettes under control either of the Rbcs2 alone or fused to the HSP270A leader sequence, PsaD, or ß-tubulin2 promoters. The corresponding T-DNA elements also harbored a cassette with a codon-optimized version of yellow fluorescence protein (YFP) under control of the Rbcs2 promoter in which the YFP open reading frame was interrupted with the first intron of Rbcs2 to prevent expression in Agrobacterium tumefaciens. The resultant binary vectors were introduced into A. tumefaciens strain C58C1/pMP90, and the derived transconjugants were used for transformation studies with the walled C. reinhardtii strain CC124. Estimated transformation frequencies ranged from 0.09 to 2.86 colonies per 106 cells inoculated. Molecular characterizations on a subset of the transgenic lineages revealed that most of the transgenic events harbored single locus insertions. Moreover, sequencing of captured junction fragments about the T-DNA insertion site showed that minimal disruption of the C. reinhardtii genome occurred. However, the transgenic lineages often harbored truncated T-DNA regions within the non-selectable marker gene cassettes.

Funder

Nebraska NSF EPSCoR

Nebraska Research Initiative

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3