A psychological network analysis of the relationship among component importance measures

Author:

Rocco Claudio M.,Barker Kash,Moronta Jose,González Andrés D.

Abstract

AbstractImportance measures (IMs) in networks are indices that allow the analysis and evaluation of the network components that are most critical to the performance of the network. Such information is useful for a decision-maker as it enables taking actions to prevent or improve the performance of the network in the face of changing operational events (e.g., the identification of important links that should be hardened or made redundant). This paper presents an approach to analyze the relationships between the IMs through the use of so-called psychological networks, which estimate the characteristics of a new kind of network wherein the “nodes” correspond to IMs and the connecting links and their capacities are derived statistically using the IMs calculated. Such estimation does not use any a priori information of relationships among IMs. The approach proposed in this work defines an equivalence paradigm not described previously in the literature between the approach used in psychology and the IMs used to measure networks. As a result, the main characteristics of the relationships among IMs are derived, such as magnitude, sign, and robustness of the selected IMs. An example related to a transportation network and a set of flow-based IMs illustrates the contribution of psychological networks for understanding how the IMs interact.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3