A Low-Code Approach for Connected Robots

Author:

Brouzos Rafail,Panayiotou KonstantinosORCID,Tsardoulias Emmanouil,Symeonidis Andreas

Abstract

AbstractAdvanced robotic systems are finally becoming a reality; following the increased attention that robotics have attracted during the last few decades, new types of robotic applications are launched, from robotic space vessels and fully autonomous cars to robotic dancers and robot companions. Even more, following the advancements in the Internet of Things (IoT) domain, robots can now participate in more complex systems, namely Cyber-physical systems (CPS). In such systems, robots, software, sensors and/or “things” cooperate seamlessly in order to exhibit the desired outcome. However, the high heterogeneity of the components comprising CPS systems requires expertise in various scientific domains, a fact that makes development of CPS applications a resource- and time-consuming process. In order to alleviate this pain, model-driven (or model-based) approaches have been introduced. They employ a low code software engineering approach and hide the domain-specific knowledge needed, by providing an abstract representation that can be more easily understood. Following the low-code paradigm, current work focuses on the development of Domain-specific Languages (DSL) for ROS2 (Robot Operating System 2) systems in order to hide low-level middleware-specific setup and configuration details and enable access to robot development by non ROS experts. Furthermore, in order to enable the integration of ROS2 robots in CPS, a second DSL was developed. The first language, GeneROS, is used for the development and configuration of the core functionalities of the robot (such as hardware drivers and algorithms), while the second language, ROSbridge-DSL, implements the interfaces for connecting robots to the Edge and the Cloud, enabling this way remote monitoring and control in the context of IoT and CPS.

Funder

State Scholarships Foundation

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Industrial and Manufacturing Engineering,Mechanical Engineering,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low Code Development Cycle Investigation;Lecture Notes in Networks and Systems;2024

2. ScaFi-Blocks: A Visual Aggregate Programming Environment for Low-Code Swarm Design;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3