Memory Efficient Deep Learning-Based Grasping Point Detection of Nontrivial Objects for Robotic Bin Picking

Author:

Dolezel PetrORCID,Stursa DominikORCID,Kopecky DusanORCID

Abstract

AbstractPicking up non-trivial objects from a bin with a robotic arm is a common task of modern industrial processes. Here, an efficient data-driven method of grasping point detection, based on an attention squeeze parallel U-shaped neural network (ASP U-Net) for the bin picking task, is proposed. The method directly provides all necessary information about the feasible grasping points of objects, which are randomly or regularly arranged in a bin with side walls. Moreover, the method is able to evaluate and select the optimal grasping point among the feasible ones for two types of end effectors, i.e., a vacuum cup and a parallel gripper. The key element of the utilized ASP U-Net neural network is the transformation of a single RGB-Depth image of the bin containing nontrivial objects into a schematic grey-scale frame, where the positions and poses of the grasping points are coded into gradient geometric shapes. The experiments carried out in this study include a comprehensive set of scenes with randomly scattered, ordered, and semi-ordered objects arranged in impeccable or deformed bins. The results indicate outstanding accuracy with more than acceptable computational requirements. Additionally, the scaling possibilities of the method can offer extremely lightweight implementations, applicable, for example, to battery-powered edge-computing devices with low RAM capacity.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3