The acyl-CoA-binding protein VdAcb1 is essential for carbon starvation response and contributes to virulence in Verticillium dahliae

Author:

Zhuang Jing,Zhang Ya-Duo,Sun Wei-Xia,Zong Juan,Li Jun-Jiao,Dai Xiao-Feng,Klosterman Steven J.,Chen Jie-Yin,Tian Li,Subbarao Krishna V.,Zhang Dan-Dan

Abstract

AbstractIn the face of carbon, nitrogen, and phosphorus starvation, microorganisms have evolved adaptive mechanisms to maintain growth. In a previous study, we identified a protein predicted to contain acyl-CoA-binding domains in the plant pathogenic fungus Verticillium dahliae. The predicted protein, designated VdAcb1, possesses an atypical signal peptide. However, the functions of this acyl-CoA-binding protein in V. dahliae are not clear. In this research, in vivo or in vitro assays confirmed that VdAcb1 is secreted extracellularly from V. dahliae, although it does not have the typical signal peptide. Furthermore, the unconventional secretion of VdAcb1 was dependent on VdGRASP, a member of the compartment for unconventional protein secretion (CUPS). The deletion mutant strain of VdAcb1VdAcb1) exhibited significant sensitivity to carbon starvation. RNA-seq revealed that the expression of genes related to filamentous growth (MSB2 pathway) and sugar transport were regulated by VdAcb1 under conditions of carbon starvation. Yeast one-hybrid experiments further showed that the expression of VdAcb1 was positively regulated by the transcription factor VdMsn4. The ΔVdAcb1 strain showed significantly reduced virulence on Gossypium hirsutum and Nicotiana benthamiana. We hypothesize that under conditions of carbon starvation, the expression of VdAcb1 is activated by VdMsn4 and VdAcb1 is secreted into the extracellular space. In turn, this activates the downstream MAPK pathway to enhance filamentous growth and virulence of V. dahliae.

Funder

the National Key Research and Development Program of China

the National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

the Agricultural Sciences Talent Program CAAS

the Agricultural Science and Technology Innovation Program grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3