DNMT2/TRDMT1 gene knockout compromises doxorubicin-induced unfolded protein response and sensitizes cancer cells to ER stress-induced apoptosis

Author:

Adamczyk-Grochala Jagoda,Bloniarz Dominika,Zielinska Klaudia,Lewinska Anna,Wnuk Maciej

Abstract

AbstractThe acidic, hypoxic and nutrient-deprived tumor microenvironment may induce endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) may exert an important cytoprotective role by promoting folding of newly synthesized proteins and cancer cell survival. The lack of DNMT2/TRDMT1 methyltransferase-mediated C38 tRNA methylation compromises translational fidelity that may result in the accumulation of misfolded and aggregated proteins leading to proteotoxic stress-related cell death. In the present study, DNMT2/TRDMT1 gene knockout-mediated effects were investigated during doxorubicin (DOX)-induced ER stress and PERK-, IRE1- and ATF6-orchestrated UPR in four genetically different cellular models of cancer (breast and cervical cancer, osteosarcoma and glioblastoma cells). Upon DOX stimulation, DNMT2/TRDMT1 gene knockout impaired PERK activation and modulated NSUN and 5-methylcytosine RNA-based responses and microRNA profiles. The lack of DNMT2/TRDMT1 gene in DOX-treated four cancer cell lines resulted in decreased levels of four microRNAs, namely, miR-23a-3p, miR-93-5p, miR-125a-5p and miR-191-5p involved in the regulation of several pathways such as ubiquitin-mediated proteolysis, amino acid degradation and translational misregulation in cancer. We conclude that DNMT2/TRDMT1 gene knockout, at least in selected cellular cancer models, affects adaptive responses associated with protein homeostasis networks that during prolonged ER stress may result in increased sensitivity to apoptotic cell death.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Biochemistry (medical),Cell Biology,Clinical Biochemistry,Pharmaceutical Science,Pharmacology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3