Crosstalk of ferroptosis regulators and tumor immunity in pancreatic adenocarcinoma: novel perspective to mRNA vaccines and personalized immunotherapy

Author:

Shi Yanlong,Wang Yizhu,Dong Hui,Niu Kaiyi,Zhang Wenning,Feng Kun,Yang Rui,Zhang Yewei

Abstract

AbstractPancreatic adenocarcinoma (PAAD) is the eighth leading cause of cancer-related mortality that causes serious physical and mental burden to human. Reactive oxygen species accumulation and iron overload might enable ferroptosis-mediated cancer therapies. This study was to elusive novel ferroptosis regulator and its association with immune microenvironment and PD-L1 in PAAD. RNA-seq data and relevant information were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression. The R packages “ggplot2” and “pheatmap” were used to the expression of 20 ferroptosis regulators between PAAD and normal tissues. The R package “ConsensusClusterPlus”, “survival”, “survminer”, “immunedeconv”, and TIDE algorithm performed consensus clustering, overall survival, progression-free survival, disease free survival, immune infiltration level, and immunotherapy responses between cluster 1 and cluster 2. The prognostic value was confirmed by the Kaplan–Meier curves, receiver operating characteristic curve, univariate and multivariate cox regression, and nomogram. Moreover, the relationship of FANCD2 and immunity, drug sensitivity was investigated by R package “ggstatsplot”, “immunedeconv”, “ggalluvial” and “pRRophetic”. Besides, the qRT-PCR, immunohistochemistry and western blotting detected the expression of FANCD2 in PAAD cell lines. Most ferroptosis regulators were up-regulated in PAAD, while the expression of LPCAT3, MT1G, and GLS2 was down-regulated in PAAD (P < 0.05), indicting there was a positively correlation among ferroptosis regulators. Based on clustering parameter, we identified cluster 1 and cluster 2, and cluster 2 had a better prognosis for patients with PAAD. The immune infiltration level of cluster 1 was higher in macrophage M1, myeloid dendritic cell, T cell CD4 + Th2, B cell, T cell CD8 + central memory, immune score, and microenvironment score than cluster 2 in PAAD. Moreover, FANCD2 was up-regulated in PAAD by public databases, immunohistochemistry, qRT-PCR and Western blotting, which had closely related to overall survival, immune microenvironment, and drug sensitivity. A novel crosstalk of ferroptosis exhibits a favourable prognostic performance and builds a robust theoretical foundation for mRNA vaccine and personalized immunotherapy. FANCD2 could be an effective for prognostic recognition, immune efficacy evaluation, and mRNA vaccine for patients with PAAD, providing a vital guidance for further study of regulating tumor immunity and vaccine development.

Funder

the Major Program of the National Natural Science Foundation of China

the National Natural Science Foundation of China

the Foreword Leading Technology Fundamental Research Project of Jiangsu

Jiangsu Province Social Development Project

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Biochemistry (medical),Cell Biology,Clinical Biochemistry,Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3