Research horizons for invasive marine species detection with eDNA/eRNA

Author:

Jarman SimonORCID,Ackermann Fran,Marnane Michael,Berry Oliver,Bunce Michael,Dawkins Kathryn,Furlan Elise,Lukehurst Sherralee,McDonald Justin,Pochon Xavier,Wilkinson Shaun,Zaiko Anastasija,Harvey Euan

Abstract

AbstractThe global marine ecosystem is changing rapidly as the result of biogeochemical cycles and ecosystem structure being altered by industrial civilization. Invasive marine species (IMS) are one of the most damaging regional consequences of human activity, and one of the most easily attributable to specific processes. This makes IMS introduction one of most tractable threats for management by appropriate policies. Once established, a different set of policies are required either to restrict IMS spread, or to attempt local eradication. The key ecosystem management tool for IMS damage mitigation is rapid, widely deployable IMS detection. Environmental Nucleic Acids (eNA), combining environmental DNA (eDNA) and environmental RNA (eRNA) analyses, have emerged as valuable tools for sensitive, cost-effective and readily deployable detection of IMS. Methods for IMS detection by eNA are still being developed through a widespread and active research community, so identifying the limitations of current processes will help prioritise eNA-based IMS detection research. We analysed and synthesised the opinions of expert marine ecosystem managers and researchers in Australia and New Zealand about the knowledge gaps and research needs for eNA-based IMS detection. This synthesis was placed in context with current research literature on what eNA technologies are currently providing as an IMS management tool; what problems exist with the current technology; and what could be done to improve this general approach. Our analyses produced a list of priorities that chart a path towards the best possible systems for IMS detection by eNA.

Funder

Chevron Technical Group

Curtin University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3