Background-oriented schlieren and laser Rayleigh scattering complementary method for accurate density field visualization

Author:

Iwamoto Masaaki,Miki Yuma,Kinefuchi Kiyoshi

Abstract

AbstractGas flow visualization is an essential technique for understanding the gas flow characteristics. Various quantitative distribution measurement methods have been proposed, each with its own advantages and disadvantages. For example, the background-oriented schlieren method provides the quantitative density distribution for wide areas with a simple optical setup, but it disadvantageously requires the appropriate boundary conditions need to be set when integrating the Poisson equation. The laser Rayleigh scattering method also provides quantitative density distribution, but it requires a high-power laser for wide-area measurements because laser intensity directly influences measurement accuracy. This study proposes a method that complements the weak points of the above two methods. First, a wide area is measured using the background-oriented schlieren method, and then, the laser Rayleigh scattering method is applied only for the boundary region to obtain the boundary condition. For a heated turbulent air jet with Reynolds number 3000, the results of the proposed method are compared with the numerical analysis and thermocouple temperature measurements. The results well match, indicating the applicability and usefulness of the proposed method. Furthermore, these results contribute to demonstrating the significance of boundary conditions in the background-oriented schlieren method and the establishment of setting guidelines.

Funder

Japan Society for the Promotion of Science

Nagoya University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3