Abstract
Abstract
There have been many attempts to construct de Sitter space-times in string theory. While arguably there have been some successes, this has proven challenging, leading to the de Sitter swampland conjecture: quantum theories of gravity do not admit stable or metastable de Sitter space. Here we explain that, within controlled approximations, one lacks the tools to construct de Sitter space in string theory. Such approximations would require the existence of a set of (arbitrarily) small parameters, subject to severe constraints. But beyond this one also needs an understanding of big-bang and big-crunch singularities that is not currently accessible to standard approximations in string theory. The existence or non-existence of metastable de Sitter space in string theory remains a matter of conjecture.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference37 articles.
1. Supernova Cosmology Project collaboration, Measurements of Ω and Λ from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565 [astro-ph/9812133] [INSPIRE].
2. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209] [INSPIRE].
3. SDSS collaboration, Baryon acoustic oscillations in the Sloan Digital Sky Survey data release 7 galaxy sample, Mon. Not. Roy. Astron. Soc. 401 (2010) 2148 [arXiv:0907.1660] [INSPIRE].
4. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 139] [INSPIRE].
5. A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [Adv. Ser. Astrophys. Cosmol. 3 (1987) 130] [INSPIRE].
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献