(A)voiding misdiagnosis: prediction of detrusor underactivity vs. bladder outlet obstruction using pre-urodynamic nomogram in male patients with LUTS

Author:

Garbas KarolinaORCID,Zapała Łukasz,Ślusarczyk Aleksander,Piecha Tomasz,Gwara Piotr,Żuk-Łapan Aleksandra,Piekarczyk Hanna,Zapała Piotr,Radziszewski Piotr

Abstract

Abstract Purpose Our study aimed to develop a noninvasive model using a combination of the set of clinical data and uroflowmetry (UFL) to differentiate between detrusor underactivity (DU) and bladder outlet obstruction (BOO) in non-neurogenic male patients with lower urinary tract symptoms (LUTS). Methods Data from 229 men with LUTS, diagnosed with DU or BOO on a pressure-flow study (PFS), were retrospectively analyzed, including medical history, Core Lower Urinary Tract Symptoms score (CLSS) questionnaire, UFL and PFS. Uni- and multivariate logistic regression were utilized for the prediction analyses. Results Of the cohort, 128 (55.9%) patients were diagnosed with DU. A multivariate logistic regression analysis identified less prevalent nocturia (OR 0.27, p < 0.002), more prevalent intermittency (OR 2.33, p = 0.03), less prevalent weak stream (OR 0.14, p = 0.0004), lower straining points in CLSS (OR 0.67, p = 0.02), higher slow stream points in CLSS (OR 1.81, p = 0.002), higher incomplete emptying points in CLSS (OR 1.31, p < 0.02), lower PVR ratio (OR 0.20, p = 0.03), and present features of fluctuating (OR 2.00, p = 0.05), fluctuating-intermittent (OR 3.09, p < 0.006), and intermittent (OR 8.11, p = 0.076) UFL curve shapes as independent predictors of DU. The above prediction model demonstrated satisfactory accuracy (c-index of 0.783). Conclusion Our 10-factor model provides a noninvasive approach to differentiate DU from BOO in male patients with non-neurogenic LUTS, offering a valuable alternative to invasive PFS.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3